24/7 Space News
EXO WORLDS
Pressure driven leakage from marine snow feeds deep ocean microbes
illustration only

Pressure driven leakage from marine snow feeds deep ocean microbes

by Erica Marchand
Paris, France (SPX) Feb 10, 2026

Sydney, Australia (SPX) Feb 10, 2026 For many years, scientists viewed the deep ocean as a nutrient poor realm where microbes in the water column scraped by on scarce resources. New research from the University of Southern Denmark now shows that these dark waters receive a significant and previously overlooked energy subsidy from sinking organic particles.

The study, led by biologists at the Department of Biology and research centers Nordcee and the Danish Center for Hadal Research, focuses on so called marine snow. These tiny clumps of dead algae, microbes and other organic material form in surface waters, aggregate, and sink through the ocean as a steady shower of particles.

As marine snow travels downwards into depths of 2 to 6 kilometers, it encounters intense hydrostatic pressure. The team reports that this pressure causes the particles to leak dissolved organic carbon and nitrogen into the surrounding seawater, effectively turning the deep ocean into a zone where microbes can tap into freshly liberated nutrients.

"The pressure acts almost like a giant juicer," said first author and Associate Professor Peter Stief. "It squeezes dissolved organic compounds out of the particles, and microbes can use them immediately."

To probe this mechanism, the scientists generated marine snow in the laboratory using diatoms, microalgae that naturally clump together in the ocean. They placed the diatom aggregates in specially built rotating pressure tanks designed to mimic the high pressure conditions of the deep sea while keeping the particles in suspension instead of letting them settle.

Under these conditions, the researchers observed that up to half of a particle's carbon content can leak out during its descent. They also found that 58 to 63 percent of the particles' initial nitrogen can escape as dissolved compounds, making substantial amounts of organic matter available to free living microbes in the deep water column.

Chemical analyses revealed that the leaked material consists mainly of proteins and carbohydrates. These compounds are readily consumed by microbes, providing an efficient source of energy and nutrients far below the sunlit surface where most primary production occurs.

Microbial communities in the experiments responded quickly to this new supply. Within two days, bacterial abundance increased by a factor of 30, and respiration rates rose sharply. These changes indicate that deep sea microbes capitalize rapidly on the freshly released organic matter and that the leakage fuels active metabolism at great depth.

The team observed similar leakage behavior across multiple diatom species tested in the pressure tanks. That consistency suggests the underlying mechanism is widespread in the ocean and not restricted to a single type of marine snow particle.

The findings carry important implications for the global carbon cycle. If sinking particles lose such large fractions of their carbon before reaching the seabed, less organic carbon ultimately becomes buried in deep sea sediments than previously assumed. Instead, more carbon remains dissolved in the deep water column, where it can persist for hundreds to thousands of years.

In contrast, carbon that reaches and is buried in sediments can stay locked away for millions of years and accumulate into vast stores over geological timescales. Much of the oil and gas currently extracted around the world formed from organic matter that was buried and transformed in this way.

"This process affects how much carbon the ocean can store and for how long," said Stief. "It is relevant for understanding climate processes and for improving future models."

The researchers emphasize that recognizing this pressure driven leakage changes how scientists estimate the efficiency of the ocean's biological carbon pump, the set of processes that move carbon from the surface to the depths. Accounting for the newly identified loss pathway may refine projections of long term carbon storage in the deep ocean.

The work also points to several next steps. The team plans to search directly in the ocean for molecular fingerprints that match the leaked compounds identified in the laboratory experiments. By comparing surface and deep water chemistry, they hope to link specific dissolved molecules to particle degradation under pressure.

To pursue this goal, the researchers are preparing for an expedition to the Arctic aboard the German research vessel Polarstern. Sampling along the voyage track will allow them to test whether the laboratory observations hold in natural deep water environments and to evaluate how widespread the phenomenon is across different ocean regions.

Research Report:The ocean's biological carbon pump under pressure

Related Links
University of Southern Denmark
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
EXO WORLDS
Lab made cosmic dust experiment reveals paths to life chemistry
Sydney, Australia (SPX) Feb 06, 2026
A PhD candidate at the University of Sydney has recreated a small slice of cosmic chemistry in the laboratory by manufacturing carbon rich dust under conditions that mimic space. Working in the School of Physics, materials and plasma physics researcher Linda Losurdo used a simple set of gases to simulate the harsh environments near aging stars and supernova remnants, then tracked how they assembled into complex solids. Losurdo and her supervisor, Professor David McKenzie, filled evacuated glass tu ... read more

EXO WORLDS
The coming end of ISS, symbol of an era of global cooperation

NASA confirms first flight to ISS since medical evacuation

Crew 12 set for Dragon launch to Station in February

Bezos's Blue Origin to 'pause' space tourism to focus on Moon efforts

EXO WORLDS
Isar Aerospace expands engine and stage testing at Esrange

NASA Moon mission launch srubbed to March after test

NASA books fifth Axiom private astronaut flight to space station

Musk merges xAI into SpaceX in bid to build space data centers

EXO WORLDS
Martian toxin found to toughen microbe built bricks

Curiosity Blog, Sols 4788-4797: Welcome Back from Conjunction

NASA Study: Non-biologic Processes Don't Fully Explain Mars Organics

Perseverance rover completes landmark AI guided trek across Jezero rim

EXO WORLDS
Dragon spacecraft gears up for crew 12 arrival and station science work

China prepares offshore test base for reusable liquid rocket launches

Retired EVA workhorse to guide China's next-gen spacesuit and lunar gear

Tiangong science program delivers data surge

EXO WORLDS
BlackSky expands Gen 3 Assured deals with new defense customer

ESA member states back SWISSto12 HummingSat with fresh funding round

Muon Space ramps up multi-mission satellite constellations

Aerospacelab expands Pulsar navigation constellation work with new Xona satellite order

EXO WORLDS
Launching the idea of data centers in space

Gilat books multimillion order for Sidewinder inflight ESA terminals

NTU Singapore boosts agile space access with trio of new projects

Musk merges xAI into SpaceX in bid to build space data centers

EXO WORLDS
Survey of 80 near Earth asteroids sharpens view of their origins and risks

Lab made cosmic dust experiment reveals paths to life chemistry

Einstein effect clears planets from tight double star systems

Engineered microbes use light to build new molecules

EXO WORLDS
Jupiter size refined by new radio mapping

Polar weather on Jupiter and Saturn hints at the planets' interior details

Europa ice delamination may deliver nutrients to hidden ocean

Birth conditions fixed water contrast on Jupiters moons

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.