24/7 Space News
NANO TECH
Carbon fibers bend and straighten under electric control
illustration only

Carbon fibers bend and straighten under electric control

by Robert Schreiber
Berlin, Germany (SPX) Feb 16, 2026

Controlled manipulation of fibers that are as thin as or thinner than a human hair remains a major challenge in micromechanics and soft robotics. Researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw have now shown that bare carbon fibers can be bent and straightened reversibly using electricity, without any additional coatings or structural modifications to the fibers themselves. Their proof-of-concept experiments demonstrate how asymmetric electrochemical processes within the material can turn pristine carbon fibers into miniature actuators.

The work targets a long-standing gap in the manipulation of microfibers and nanofibers. Advances in materials engineering have delivered many so-called smart materials that change color, shape, or other properties in response to stimuli such as electric fields, light, temperature, or pH, enabling applications in sensors, textiles, and medicine. In many of these systems, however, fibers must be specially engineered or coated to respond in a controlled way, which complicates fabrication and limits scalability. The new approach instead exploits the intrinsic structure and electrochemical behavior of commercially available carbon fibers.

The team led by Dr. Wojciech Nogala at the Institute of Physical Chemistry (IChF) placed a single carbon fiber with a microscale diameter in a closed bipolar electrochemical cell. Bipolar cells, used for decades in biosensing, electrochemical reactors, and batteries, allow redox reactions to occur at both ends of an electrically floating conductor when an external voltage is applied across the electrolyte. In this setup, the carbon fiber serves as a freestanding bipolar electrode immersed in an electrolyte that contains lithium and perchlorate ions, along with benzoquinone and hydroquinone as a redox couple.

Two types of carbon fibers were investigated: one with a smooth surface and another with an asymmetrically rough surface. Ions from the supporting electrolyte insert into the fiber surface when sufficient voltage is applied, and they are expelled when the potential is reversed. In the asymmetrically rough fiber, the distribution of pores is uneven along the surface, which leads to a nonuniform ion insertion profile and, in turn, an asymmetric mechanical response. As a result, the rough fiber bends under applied voltage and returns to its original straight configuration when the potential is removed or reversed, while the smooth fiber exhibits a different and more symmetric response.

The actuation mechanism is rooted in the way the electrical double layer and redox reactions develop along the asymmetric fiber. According to Dr. Nogala, "We successfully used the closed bipolar cell to wirelessly actuate a freestanding carbon fiber electrochemically. An uneven electrical double layer is enabled by the naturally asymmetric groove configuration in the fiber, which is one of the fundamental factors in producing the necessary initial asymmetry. This leads to asymmetric tension and contraction in the fiber. Simultaneous oxidation and reduction reactions in the two compartments of the bipolar cell allow for wireless actuation." In practical terms, ions move into the carbon structure on one side of the fiber while leaving it on the other, creating differential strain that bends the fiber.

Because the process is reversible, cycling the voltage causes the fiber to repeatedly bend and straighten, effectively functioning as a microscopic tweezer. The amplitude of the motion depends on both the applied voltage and the fiber length, allowing the actuation to be tuned for specific tasks. The researchers also show that voltage pulses can drive periodic motion, with the frequency and magnitude controlled by the pulse shape and duration. This wireless control avoids the need for direct electrical connections to the fiber, which can be difficult to implement at very small scales.

The demonstrated system points toward new designs for microactuators and synthetic muscles based on prefabricated asymmetric carbon fibers. Arrays of such fibers could be integrated into miniaturized devices for microrobotics, targeted manipulation of materials, or other applications that require precise movement on small length scales. In soft robotics, where compliant and lightweight actuators are crucial, the combination of low density, high mechanical strength, and favorable electrical properties makes carbon fibers particularly attractive.

Beyond robotics, the authors note that the concept could be extended to other electrochemically active carbon-based structures and to different electrolytes or redox systems. Adjusting the pore structure, surface chemistry, or electrolyte composition could tailor the actuation characteristics, such as bending direction, response speed, or operating voltage range. The work thus opens a route toward engineering families of carbon-fiber actuators optimized for specific environments or functions without fundamentally changing the underlying actuation principle.

Research Report: Bipolar electrochemical tweezers using pristine carbon fibers with intrinsically asymmetric features

Related Links
Institute of Physical Chemistry of the Polish Academy of Sciences
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
NANO TECH
Engineered substrates sharpen single nanoparticle plasmon spectra
Sydney, Australia (SPX) Feb 06, 2026
A research team led by the Singapore University of Technology and Design has demonstrated that spectral broadening in single-nanoparticle plasmons is not an unavoidable consequence of metal losses but can be overcome by tailoring the photonic environment beneath the particle. Their approach, reported as a Letter in Physical Review B, achieves high-quality plasmonic hotspots in individual metal nanoparticles by engineering the substrate to reshape light matter interactions at the nanoscale. Localiz ... read more

NANO TECH
International crew takes off for space station

NASA confirms first flight to ISS since medical evacuation

The coming end of ISS, symbol of an era of global cooperation

Crew 12 set for Dragon launch to Station in February

NANO TECH
Latvian startup advances nuclear-fueled power for satellites and future Moon missions

SpaceX shifts focus from Mars to Moon, Musk says

NASA books fifth Axiom private astronaut flight to space station

NASA Moon mission launch srubbed to March after test

NANO TECH
Curiosity Blog, Sols 4788-4797: Welcome Back from Conjunction

NASA Study: Non-biologic Processes Don't Fully Explain Mars Organics

Martian toxin found to toughen microbe built bricks

Perseverance rover completes landmark AI guided trek across Jezero rim

NANO TECH
Dragon spacecraft gears up for crew 12 arrival and station science work

China prepares offshore test base for reusable liquid rocket launches

Retired EVA workhorse to guide China's next-gen spacesuit and lunar gear

Tiangong science program delivers data surge

NANO TECH
BlackSky expands Gen 3 Assured deals with new defense customer

Muon Space ramps up multi-mission satellite constellations

ESA member states back SWISSto12 HummingSat with fresh funding round

Aerospacelab expands Pulsar navigation constellation work with new Xona satellite order

NANO TECH
SoftBank rides AI boom to post $1.6 billion net profit

Light based computing module aims to cut AI power demand

Latam-GPT: a Latin American AI to combat US-centric bias

UAE's G42 says joining $1 bn AI project in Vietnam

NANO TECH
Survey of 80 near Earth asteroids sharpens view of their origins and risks

Lab made cosmic dust experiment reveals paths to life chemistry

Einstein effect clears planets from tight double star systems

Icy cycles may have driven early protocell evolution

NANO TECH
Jupiter size refined by new radio mapping

Polar weather on Jupiter and Saturn hints at the planets' interior details

Europa ice delamination may deliver nutrients to hidden ocean

Birth conditions fixed water contrast on Jupiters moons

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.