. 24/7 Space News .
OUTER PLANETS
Exotic water ice contributes to understanding of magnetic anomalies on Neptune and Uranus
by Staff Writers
Sao Paulo, Brazil (SPX) Jan 23, 2023

Image from simulation of ice XVIII. Oxygen ions (red) occupy a regular crystal lattice, while protons (white) diffuse like a liquid

Ordinary everyday ice, like the ice produced by a fridge, is known to scientists as hexagonal ice (ice Ih), and is not the only crystalline phase of water. More than 20 different phases are possible. One of them, called "superionic ice" or "ice XVIII", is of particular interest, among other reasons, because it is thought to make up a large part of Neptune and Uranus, planets frequently referred to as "ice giants".

In the superionic crystalline phase, water loses its molecular identity (H2O): negative oxygen ions (O2-) crystallize into an extensive lattice, and protons in the form of positive hydrogen ions (H+) form a liquid that floats around freely within the oxygen lattice.

"The situation can be compared to a metal conductor such as copper, with the big difference that positive ions form the crystal lattice in the metal, and electrons bearing a negative charge are free to wander around the lattice," said Maurice de Koning, a professor at the State University of Campinas's Gleb Wataghin Physics Institute (IFGW-UNICAMP) in Sao Paulo state, Brazil.

De Koning led the study that resulted in an article published in Proceedings of the National Academy of Sciences of the United States of America (PNAS) and featured on the cover of its November 8, 2022 issue.

Superionic ice forms at extremely high temperatures in the range of 5,000 kelvins (4,700 C) and pressure of around 340 gigapascals, or over 3.3 million times Earth's standard atmospheric pressure, he explained. It is therefore impossible for stable superionic ice to exist on our planet.

It can exist on Neptune and Uranus, however. In fact, scientists are confident that large amounts of ice XVIII lurk deep in their mantles, thanks to the pressure resulting from these giants' huge gravitational fields, as confirmed by seismographic readings.

"The electricity conducted by the protons through the oxygen lattice relates closely to the question of why the axis of the magnetic field doesn't coincide with the rotation axis in these planets. They're significantly misaligned, in fact," De Koning said.

Measurements made by the space probe Voyager 2, which flew by these distant planets on its journey to the edge of the Solar System and beyond, show that the axes of Neptune's and Uranus's magnetic fields form angles of 47 degrees and 59 degrees with their respective rotation axes.

Experiments and simulations
On Earth, an experiment reported in Nature in 2019 succeeded in producing a tiny amount of ice XVIII for 1 nanosecond (a billionth of a second), after which the material disintegrated. The researchers used laser-driven shock waves to compress and heat liquid water.

According to the paper in Nature, six high-power laser beams were fired in a temporally tailored sequence to compress a thin water layer encapsulated between two diamond surfaces. The shock waves reverberated between the two stiff diamonds to achieve a homogeneous compression of the water layer resulting in the superionic crystalline phase for an extremely short time.

"In this latest study, we didn't perform a real physical experiment but used computer simulations to investigate the mechanical properties of ice XVIII and find out how its deformations influence the phenomena seen to occur on Neptune and Uranus," De Koning said.

A key aspect of the study was the deployment of density functional theory (DFT), a method derived from quantum mechanics and used in solid-state physics to resolve complex crystalline structures. "First of all, we investigated the mechanical behavior of a flawless phase, which doesn't exist in the real world. We then added defects to see what kinds of macroscopic deformations resulted," he explained.

Crystal defects are typically point defects characterized by ion vacancies or intrusion of ions from other materials into the crystal lattice. Not so in this case. De Koning was referring to linear defects known as "dislocations", which are due to angular differences between adjacent layers resulting in puckering somewhat like a rumpled rug.

"In crystal physics, dislocation was postulated in 1934 but first observed experimentally in 1956. It's a type of defect that explains a great many phenomena. We say dislocation is to metallurgy what DNA is to genetics," De Koning said.

In the case of superionic ice, the sum of dislocations produces shear, a macroscopic deformation familiar to mineralogists, metallurgists and engineers. "In our study, we calculated, among other things, how much it's necessary to force the crystal for it to break up owing to shear," De Konig said.

To this end, the researchers had to consider a relatively large cell of the material with about 80,000 molecules. The calculations entailed extremely heavy and sophisticated computational techniques, including neural networks, machine learning, and the composition of various configurations based on DFT.

"This was a most interesting aspect of the study, integrating knowledge in metallurgy, planetology, quantum mechanics and high-performance computing," he said.

The study was supported by FAPESP via a postdoctoral fellowship awarded to the first author, Filipe Matusalem de Souza, under De Koning's supervision; a Thematic Project led by Alex Antonelli, a researcher at UNICAMP; and the Center for Computing in Engineering and Sciences (CCES), funded under the aegis of FAPESP Program for Research, Innovation and Dissemination Centers (RIDCs) .

Research Report:Plastic deformation of superionic water ices


Related Links
Sao Paulo Research Foundation
The million outer planets of a star called Sol


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


OUTER PLANETS
Tumultuous migration on the edge of the Hot Neptune Desert
Geneva, Switzerland (SPX) Jan 19, 2023
All kinds of exoplanets orbit very close to their star. Some look like the Earth, others like Jupiter. Very few, however, are similar to Neptune. Why this anomaly in the distribution of exoplanets? Researchers from the University of Geneva (UNIGE) and the National Centre of Competence in Research (NCCR) PlanetS have observed a sample of planets located at the edge of this Hot Neptune Desert to understand its creation. Using a technique combining the two main methods of studying exoplanets (radial ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

OUTER PLANETS
UAE astronaut says not required to fast during Ramadan on ISS

Zero-Covid left in dust as Chinese revellers fuel travel boom

Astronauts conduct first ISS spacewalk of 2023

RIT scientists help rediscover earliest known star map using multispectral imaging

OUTER PLANETS
NASA safety system enables Rocket Lab launch from Wallops

NASA validates revolutionary propulsion design for deep space missions

DARPA, NASA Collaborate on Nuclear Thermal Rocket Engine

Stratolaunch creates Advanced Program Office at Purdue for hypersonics

OUTER PLANETS
Sol 3721: Wrapping up at the Encanto Drill Site

Sols 3718-3720: Go For Drilling at Encanto

NASA launches Mars Sample Receiving Project Office at Johnson

The rich meteorology of Mars studied in detail from the Perseverance rover

OUTER PLANETS
Chinese astronauts send Spring Festival greetings from space station

China to launch 200-plus spacecraft in 2023

China's space industry hits new heights

China's first private sector 2023 rocket launch up, up and away

OUTER PLANETS
Hawkeye 360 launches Cluster 6 satellites aboard inaugural Rocket Lab Electron flight from Virginia

UK Space Agency announces new funding for satellite communications

How ESA works with the EU to advance European space

Britain's Tim Peake steps down from ESA astronaut corps

OUTER PLANETS
GMV to develop the ground control center for Hisdesat's new

The last mysteries of mica

Incorporation of water molecules into layered materials impacts ion storage capability

Microchip radiation-tolerant power management devices will target LEO applications

OUTER PLANETS
Webb Telescope identifies origins of icy building blocks of life

Rare opportunity to study short-lived volcanic island reveals sulfur-metabolizing microbes

New small laser device can help detect signs of life on other planets

How do rocky planets really form

OUTER PLANETS
Exotic water ice contributes to understanding of magnetic anomalies on Neptune and Uranus

Webb spies Chariklo ring system with high-precision technique

From Europe to Jupiter via Kourou

Airbus finalises JUICE ready for its mission to Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.