. 24/7 Space News .
TECH SPACE
Incorporation of water molecules into layered materials impacts ion storage capability
by Staff Writers
Matsumoto, Japan (SPX) Jan 22, 2023

The image of confined nano-space where water molecules are structured around ions.

Investigating the interplay between the structure of water molecules that have been incorporated into layered materials such as clays and the configuration of ions in such materials has long proved a great experimental challenge. But researchers have now used a technique elsewhere commonly used to measure extremely tiny masses and molecular interactions at the nano level to observe these interactions for the first time.

Many materials take a layered form at the microscopic or nano-scale. When dry, clays for example resemble a series of sheets stacked upon each other. When such layered materials encounter water however, that water can be confined and integrated into the gaps or holes-or, more accurately, the 'pores'-between layers.

Such 'hydration' can also occur when water molecules or their constituent elements, notably a hydroxide ion (a negatively charged ion combining a single oxygen and single hydrogen atom) are integrated into the crystalline structure of the material. This type of material, a 'hydrate', is not necessarily 'wet' even though water is now part of it. Hydration can also substantially change the original material's structure and properties.

In this 'nanoconfinement', the hydration structures-how water molecules or their constituent elements arrange themselves-determine the ability of the original material to store ions (positively or negatively charged atoms or groups of atoms).

This storage of water or charge means that such layered materials, from conventional clays to layered metal oxides-and, crucially, their interactions with water-have widespread applications, from water purification to energy storage.

However, studying the interplay between this hydration structure and the configuration of ions in the ion storage mechanism of such layered materials has proven to be a great challenge. And efforts at analyzing how these hydration structures change over the course of any movement of these ions ('ion transport') are even more difficult.

Recent research has shown that such water structures and interactions with the layered materials play an important role in giving the latter their high ion-storage capacities, all of which in turn depends upon how flexible the layers that host the water are. In the space between layers, any pores that are not filled with ions get filled with water molecules instead, helping to stabilize the layered structure.

"Put another way, the water structures are sensitive to how the interlayer ions are structured," said Katsuya Teshima, corresponding author of the study and a materials chemist with the Research Initiative for Supra-Materials at Shinshu University. "And while this ion configuration in many different crystal structures controls how many ions can be stored, such configurations until now had rarely been systematically investigated."

So Teshima's group looked to 'quartz crystal microbalance with energy dissipation monitoring' (QCM-D) to assist with their theoretical calculations. QCM-D is essentially an instrument that works like a balance scale that can measure extremely tiny masses and molecular interactions at the nano level. The technique can also measure tiny changes in energy loss.

The researchers used QCM-D to demonstrate for the first time that the change in the structure of water molecules confined in the nano-space of layered materials can be experimentally observed.

They did this by measuring the "hardness" of the materials. They investigated the layered double hydroxides (LDHs) of a class of negatively charged clay. They found that the hydration structures were associated with the hardening of the LDHs when any ion exchange reaction happens (a swapping of one kind of ion with a different type of ion but with the same change).

"In other words, any change in ion interaction originates with the change in the hydration structure that occurs when ions are incorporated into the nano-space," added Tomohito Sudare, a collaborator on the study now with the University of Tokyo.

In addition, the researchers found that the hydration structure is highly dependent on the charge density (the amount of charge per unit of volume) of the layered material. This in turn is largely what governs the ion storage capacity.

The researchers now hope to apply these measurement methods together with the knowledge of the hydration structure of ions to devise new techniques for improving the ion-storage capability of layered materials, potentially opening new avenues for ion separation and sustainable energy storage.

Research Report:Critical role of water structure around interlayer ions for ion storage in layered double hydroxides


Related Links
Shinshu University
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Riot at Chinese-funded nickel plant in Indonesia kills two
Jakarta (AFP) Jan 16, 2023
Two workers including a Chinese national were killed at a nickel smelting plant in Indonesia at the weekend after a riot broke out during a protest over labour conditions, officials said Monday. The clashes began Saturday evening at the facility on Indonesia's Sulawesi island operated by PT Gunbuster Nickel Industry (GNI), a local unit of China's Jiangsu Delong Nickel Industry. The island is a hub for the mineral-rich country's production of the metal, which is used for electric vehicle batterie ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Astronauts conduct first ISS spacewalk of 2023

RIT scientists help rediscover earliest known star map using multispectral imaging

Crop seeds, microbial strains tested in China's two space missions unveiled

US, Japan sign Space Collaboration Agreement at NASA Headquarters

TECH SPACE
Boeing CST-100 Starliner Crew and Service Modules Mated

SEXBOMB being moved to Cornwall Space Port for hypersonic developments

Vulcan rocket one step closer to launch

Update on "Start Me Up" mission anomaly

TECH SPACE
Ingenuity's 40th flight on Mars tracks a rocky road

ALUULA Composites selected for future Mars missions

Our Encanto: Sols 3716-3717

What is the Chemistry and Mineralogy Instrument?

TECH SPACE
China to launch 200-plus spacecraft in 2023

China's space industry hits new heights

China's first private sector 2023 rocket launch up, up and away

First rocket launch of the New Year leaves Wenchang for space

TECH SPACE
Britain's Tim Peake steps down from ESA astronaut corps

Amazonas Nexus at Cape Canaveral for final processing

Inmarsat announces trans-Atlantic 'stepping stone' trip for latest British satellite

Carrier rockets place four satellites into orbit

TECH SPACE
The last mysteries of mica

Incorporation of water molecules into layered materials impacts ion storage capability

Microchip radiation-tolerant power management devices will target LEO applications

UK to offer 600m pounds in pollution-cutting support for steelmakers: media

TECH SPACE
New small laser device can help detect signs of life on other planets

How do rocky planets really form

NASA's Webb confirms its first exoplanet

Distant star's dimming was likely a 'dusty' companion getting in the way, astronomers say

TECH SPACE
Tumultuous migration on the edge of the Hot Neptune Desert

SwRI scientists find evidence for magnetic reconnection between Ganymede and Jupiter

SwRI delivers innovative instrument for NASA's Europa Clipper mission

PSI Io Input/Output observatory discovers large volcanic outburst on Jupiter's moon Io









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.