. | . |
The last mysteries of mica by Staff Writers Vienna, Austria (SPX) Jan 26, 2023
At first glance, mica is something quite ordinary: it is a common mineral, found in granite for example, and has been extensively studied from geological, chemical and technical perspectives. One might think that nothing new can be discovered from such an everyday material. But now a team from the Vienna University of Technology has presented a study in the journal Nature Communications, in which it was possible to explain the distribution of potassium ions on the mica surface. The physical surface details of mica have never been studied on an atomic scale, and this information is important for research on electronics with 2D materials.
Atomically thin layers In a sense, mica is a naturally occurring 2D material: It consists of atomically thin layers that can contain different atoms depending on the type of mica: oxygen is always present, often silicon, often potassium or aluminum as well. The layer structure of the mica is also the reason for its characteristic sheen - you can often see a spectrum of colors, similar to a thin layer of oil on a puddle of water.
Potassium ions in ultra high vacuum "We were able to see how the potassium ions are distributed on the surface," says Giada Franceschi, the first author of the current paper, who works in Prof. Ulrike Diebold's team. "We were also able to gain insights into the positions of the aluminum ions under the surface layer - this is a particularly difficult task experimentally." The images from the Vienna University of Technology show that the potassium ions are not randomly distributed on the surface, as previously assumed, but are arranged in tiny patterns. These distributions could also be calculated with the help of computer simulations.
Matching insulator for 2D electronics
Research Report:Resolving the intrinsic short-range ordering of K+ ions on cleaved muscovite mica
We need to learn to live with less steel Tokyo, Japan (SPX) Jan 22, 2023 Steel is one of the most important materials in the world, integral to the cars we drive, the buildings we inhabit, and the infrastructure that allows us to travel from place to place. Steel is also responsible for 7% of global greenhouse gas emissions. In 2021, 45 countries made a commitment to pursue near-zero-emission steel in the next decade. But how possible is it to produce the steel we need in society with zero emissions? A new study focused on the Japanese steel industry shows that if we a ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |