. | . |
DARPA, NASA Collaborate on Nuclear Thermal Rocket Engine by Staff Writers Washington DC (SPX) Jan 25, 2023
DARPA, via its Demonstration Rocket for Agile Cislunar Operations (DRACO) program, is collaborating with NASA to build a nuclear thermal rocket (NTR) engine that could expand possibilities for the space agency's future long-duration spaceflight missions. The goal is to test an NTR-enabled spacecraft in Earth orbit during the 2027 fiscal year. An NTR presents advantages over existing propulsion technologies, such as sending cargo to a new lunar base, humans to Mars, and robotic missions even farther. "DARPA and NASA have a long history of fruitful collaboration in advancing technologies for our respective goals, from the Saturn V rocket that took humans to the Moon for the first time to robotic servicing and refueling of satellites," said Dr. Stefanie Tompkins, director, DARPA. "The space domain is critical to modern commerce, scientific discovery, and national security. The ability to accomplish leap-ahead advances in space technology through the DRACO nuclear thermal rocket program will be essential for more efficiently and quickly transporting material to the Moon and eventually, people to Mars." NTR propulsion offers a high thrust-to-weight ratio around 10,000x greater than electric propulsion and with two-to-five times greater efficiency than in-space chemical propulsion. "NASA will work with our long-term partner, DARPA, to develop and demonstrate advanced nuclear thermal propulsion technology as soon as 2027. With the help of this new technology, astronauts could journey to and from deep space faster than ever - a major capability to prepare for crewed missions to Mars," said NASA Administrator Bill Nelson. "Congratulations to both NASA and DARPA on this exciting investment, as we ignite the future, together." Nuclear thermal rockets have been built before, so DRACO has a head start. About 50 years ago, the technology was tested on the ground. DRACO is now leveraging lessons learned from past NTR reactor technology, but instead of using highly-enriched uranium, DRACO is using high-assay low-enriched uranium (HALEU) fuel to have fewer logistical hurdles on its ambitious timeline. As an added safety precaution, DARPA plans to engineer the system so that the DRACO engine's fission reaction will turn on only once it reaches space. Fission, the same process used for nuclear power, is the splitting of atoms. It creates high levels of heat that can turn rocket propellant such as hydrogen from a liquid to a gas phase. In the NTR, that gaseous propellant is accelerated out a converging/diverging nozzle in the exact same way as a conventional chemical rocket engine. The high performance of an NTR is enabled by the reactor passing its heat along to its rocket propellant. DRACO's proposed solid core NTR temperatures could reach almost 5,000 degrees Fahrenheit, requiring use of advanced materials. "NASA is uniquely positioned to provide guidance on the challenging rocket engine and cryogenic fluid management specifications with liquid hydrogen to meet specific mission needs," said Dr. Tabitha Dodson, DARPA program manager for DRACO. "Since the NTR uses propellant more efficiently, it offers more aggressive trajectories and creative burn profiles to move heavy cargo more quickly in the cislunar domain as compared to today's in-space propulsion methods." The U.S. Space Force has signaled its support for DRACO with the intent to provide the launch for the demonstration mission. "We will conduct several experiments with the reactor at various power levels while in space, sending results back to operators on Earth, before executing the full-power rocket engine test remotely," said Dodson. "These tests will inform the approach for future operation of NTR engines in space."
Structural details of Long March 9 revealed Beijing (XNA) Jan 19, 2023 Chinese rocket researchers are now definite on the overall structural design for the nation's super-heavy carrier rocket, known as the Long March 9, a project insider said on Wednesday. Gu Mingkun, a senior rocket designer at the China Academy of Launch Vehicle Technology, the country's leading rocket maker, said at a news conference that the baseline model of the Long March 9 will be a large, three-stage rocket about 110 meters tall. It will have a liftoff weight of about 4,000 metric tons ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |