24/7 Space News
TECH SPACE
Temperature-sensing building material changes color to save energy
Hsu Group created models of how their material could cut energy costs in typical buildings in 15 different U.S. cities, finding that, on average, the material would use less than 0.2% of the building's total electricity, but could save 8.4% of the building's annual HVAC energy consumption.
ADVERTISEMENT
Temperature-sensing building material changes color to save energy
by Staff Writers
Chicago IL (SPX) Jan 27, 2023

Researchers at the University of Chicago's Pritzker School of Molecular Engineering (PME) have designed a chameleon-like building material that changes its infrared color-and how much heat it absorbs or emits-based on the outside temperature. On hot days, the material can emit up to 92 percent of the infrared heat it contains, helping cool the inside of a building. On colder days, however, the material emits just 7 percent of its infrared, helping keep a building warm.

"We've essentially figured out a low-energy way to treat a building like a person; you add a layer when you're cold and take off a layer when you're hot," said Asst. Prof. Po-Chun Hsu, who led the research published in Nature Sustainability. "This kind of smart material lets us maintain the temperature in a building without huge amounts of energy."

Driven by climate change
According to some estimates, buildings account for 30 percent of global energy consumption and emit 10 percent of all global greenhouse gas. About half of this energy footprint is attributed to the heating and cooling of interior spaces.

"For a long time, most of us have taken our indoor temperature control for granted, without thinking about how much energy it requires," said Hsu. "If we want a carbon-negative future, I think we have to consider diverse ways to control building temperature in a more energy-efficient way."

Researchers have previously developed radiative cooling materials that help keep buildings cool by boosting their ability to emit infrared, the invisible heat that radiates from people and objects. Materials also exist that prevent the emission of infrared in cold climates.

"A simple way to think about it is that if you have a completely black building facing the sun, it's going to heat up more easily than other buildings," said PME graduate student Chenxi Sui, the first author of the new manuscript.

That kind of passive heating might be a good thing in the winter, but not in the summer.

As global warming causes increasingly frequent extreme weather events and variable weather, there is a need for buildings to be able to adapt; few climates require year-round heating or year-round air conditioning.

From metal to liquid and back
Hsu and colleagues designed a non-flammable "electrochromic" building material that contains a layer that can take on two conformations: solid copper that retains most infrared heat, or a watery solution that emits infrared. At any chosen trigger temperature, the device can use a tiny amount of electricity to induce the chemical shift between the states by either depositing copper into a thin film, or stripping that copper off.

In the new paper, the researchers detailed how the device can switch rapidly and reversibly between the metal and liquid states. They showed that the ability to switch between the two conformations remained efficient even after 1,800 cycles.

Then, the team created models of how their material could cut energy costs in typical buildings in 15 different U.S. cities. In an average commercial building, they reported, the electricity used to induce electrochromic changes in the material would be less than 0.2% of the total electricity usage of the building, but could save 8.4% of the building's annual HVAC energy consumption.

"Once you switch between states, you don't need to apply any more energy to stay in either state," said Hsu. "So for buildings where you don't need to switch between these states very frequently, it's really using a very negligible amount of electricity."

Scaling up
So far, Hsu's group has only created pieces of the material that measure about six centimeters across. However, they imagine that many such patches of the material could be assembled like shingles into larger sheets. They say the material could also be tweaked to use different, custom colors-the watery phase is transparent and nearly any color can be put behind it without impacting its ability to absorb infrared.

The researchers are now investigating different ways of fabricating the material. They also plan to probe how intermediate states of the material could be useful.

"We demonstrated that radiative control can play a role in controlling a wide range of building temperatures throughout different seasons," said Hsu. "We're continuing to work with engineers and the building sector to look into how this can contribute to a more sustainable future."

Research Report:Dynamic electrochromism for all-season radiative thermoregulation

Related Links
University of Chicago
Space Technology News - Applications and Research

Subscribe Free To Our Daily Newsletters

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TECH SPACE
MLU physicists solve mystery of two-dimensional quasicrystal formation from metal oxides
Halle, Germany (SPX) Jan 27, 2023
The structure of two-dimensional titanium oxide brakes-up at high temperatures by adding barium; instead of regular hexagons, rings of four, seven and ten atoms are created that order aperiodically. A team at Martin Luther University Halle-Wittenberg (MLU) made this discovery in colaboration with researchers from the Max Planck Institute (MPI) for Microstructure Physics, the Universite Grenoble Alpes and the National Institute of Standards and Technology (Gaithersburg, USA), thereby solving the riddle o ... read more

ADVERTISEMENT
ADVERTISEMENT
TECH SPACE
UAE astronaut says not required to fast during Ramadan on ISS

Astronauts conduct first ISS spacewalk of 2023

Zero-Covid left in dust as Chinese revellers fuel travel boom

RIT scientists help rediscover earliest known star map using multispectral imaging

TECH SPACE
NASA validates revolutionary propulsion design for deep space missions

MIT Gas Turbine Laboratory prepares to jet into the future

Isar Aerospace and Spaceflight Inc sign launch agreement to service global market

NASA, DARPA will test nuclear engine for future Mars missions

TECH SPACE
Perseverance marks 1 Martian Year at Jezero

Sol 3721: Wrapping up at the Encanto Drill Site

NASA launches Mars Sample Receiving Project Office at Johnson

Sols 3718-3720: Go For Drilling at Encanto

TECH SPACE
Chinese astronauts send Spring Festival greetings from space station

China to launch 200-plus spacecraft in 2023

China's space industry hits new heights

China's first private sector 2023 rocket launch up, up and away

TECH SPACE
SpaceX launches 56 more Starlink satellites in heaviest payload yet

Hawkeye 360 launches Cluster 6 satellites aboard inaugural Rocket Lab Electron flight from Virginia

UK Space Agency announces new funding for satellite communications

Britain's Tim Peake steps down from ESA astronaut corps

TECH SPACE
AI voice tool 'misused' as deepfakes flood web forum

Ghostly mirrors for high-power lasers

Judge denies US bid to block Meta virtual reality deal: reports

To decarbonize the chemical industry, electrify it

TECH SPACE
Webb Telescope identifies origins of icy building blocks of life

Rare opportunity to study short-lived volcanic island reveals sulfur-metabolizing microbes

New small laser device can help detect signs of life on other planets

How do rocky planets really form

TECH SPACE
Webb spies Chariklo ring system with high-precision technique

Europe's JUICE spacecraft ready to explore Jupiter's icy moons

Exotic water ice contributes to understanding of magnetic anomalies on Neptune and Uranus

From Europe to Jupiter via Kourou

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.