. 24/7 Space News .
EXO WORLDS
Rules of life: From a pond to the beyond
by Staff Writers
Tempe AZ (SPX) Feb 19, 2020

The Lagunitas pond in the Cuatro Cienegas Basin of Mexico

The Cuatro Cienegas Basin, located in Chihuahuan Desert in Mexico, was once a shallow sea that became isolated from the Gulf of Mexico around 43 million years ago.

This basin has an unusual characteristic of being particularly nutrient-poor and harboring a 'lost world' of many below-ground and above-ground aquatic microbes of ancient marine ancestry.

Because of these characteristics, it is an invaluable place for researchers to study and understand how life may have existed on other planets in our solar system.

In a recent study published in the journal eLIFE a team of researchers, including lead author Jordan Okie of Arizona State University's School of Earth and Space Exploration and senior author Jim Elser of the School of Life Sciences, conducted experiments in the Cuatro Cienegas Basin.

Their goal was to shed light on how fundamental features of an organism's genome - its size, the way it encodes information, and the density of information--affect its ability to thrive in an extreme environment.

"This area is so poor in nutrients that many of its ecosystems are dominated by microbes and may have similarities to ecosystems from early Earth, as well as to past wetter environments on Mars that may have supported life," says lead author Okie.

For their experiment, researchers conducted field monitoring, sampling, and routine water chemistry for 32 days in a shallow, nutrient-poor pond called Lagunita in the Cuatro Cienegas Basin.

First, they installed mescocosms (miniature ecosystems) that served as a control group and remained separate from the rest of the pond. They then added a fertilizer solution that was rich in nitrogen and phosphorus to increase microbial growth in the pond.

At the end of the experiment, they examined how the community in the pond changed in response to the additional nutrients, focusing on their ability to process biochemical information within their cells.

J. Craig Venter Institute associate professor Christopher Dupont, who is a senior author on the study, stated, "We hypothesized that microorganisms found in oligotrophic (low nutrient) environments would, out of necessity, rely on low-resource strategies for replication of DNA, transcription of RNA, and translation of protein. Conversely, a copiotrophic (high nutrient) environment favors resource-intensive strategies."

Ultimately, they found that indeed a nutrient-enriched community became dominated by species that could process biochemical information at a faster rate whereas the original low-nutrient community harbored species with reduced costs of biochemical information processing.

"This study is unique and powerful because it takes ideas from the ecological study of large organisms and applies them to microbial communities in a whole-ecosystem experiment," says Elser. "By doing so, we were able, perhaps for the first time, to identify and confirm that there are fundamental genome-wide traits associated with systematic microbial responses to ecosystem nutrient status, without regard to the species identity of those microbes."

What this may suggest for life on other planets is that organisms, no matter where they are, have to have information-processing machinery fine-tuned to the key resources around them. In turn, the supply of these resources will depend on the planetary environment.

"This is very exciting, as it suggests there are rules of life that should be generally applicable to life on Earth and beyond," says Okie.

Research paper


Related Links
Arizona State University
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
To make amino acids, just add electricity
Fukuoka, Japan (SPX) Jan 30, 2020
New research from Kyushu University in Japan could one day help provide humans living away from Earth some of the nutrients they need to survive in space or even give clues to how life started. Researchers at the International Institute for Carbon-Neutral Energy Research reported a new process using electricity to drive the efficient synthesis of amino acids, opening the door for simpler and less-resource-intensive production of these key components for life. In addition to being the basic b ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
NASA science and cargo head to Space Station

Geneva invention show delayed over novel coronavirus

Source reveals timeline for US first launch of manned vehicle to ISS after nearly decade-long hiatus

US negotiating to buy one or two seats on Soyuz

EXO WORLDS
SpaceX launch grows Starlink constellation to more than 300 satellites

Electric solid propellant - can it take the heat?

Artemis I progresses toward launch

Aerojet Rocketdyne wins DARPA hypersonic propulsion technology contract

EXO WORLDS
Nilosyrtis Mensae - erosion on a large scale

SwRI models hint at longer timescale for Mars formation

Salt water may periodically form on the surface of Mars

Mars 2020 rover goes coast-to-coast to prep for launch

EXO WORLDS
China's Long March-5B carrier rocket arrives at launch site

China to launch more space science satellites

China's space station core module, manned spacecraft arrive at launch site

China to launch Mars probe in July

EXO WORLDS
Understanding the impact of satellite constellations on astronomy

Arianespace and Starsem launch 34 OneWeb satellites to help bridge the digital divide

RUAG Space dispenses another batch of Airbus OneWeb satellites

Azercosmos and Infostellar to enter into Ground Station Partnership

EXO WORLDS
Cracks actually protect historical paintings against environmental fluctuation

Going viral: Demand for disease-themed movies and games explodes

Researchers develop smaller, lighter radiation shielding

Army researchers develop new method for analyzing metal

EXO WORLDS
Rules of life: From a pond to the beyond

Random gene pulse patterns key to multicellular system development

Earth's cousins: Upcoming missions to look for 'biosignatures' in exoplanet atmospheres

Looking for aliens who might be looking for us

EXO WORLDS
A close-up of Arrokoth reveals how planetary building blocks were constructed

New Horizons team discovers a critical piece of the planetary formation puzzle

Pluto's icy heart makes winds blow

Why Uranus and Neptune are different









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.