. 24/7 Space News .
OUTER PLANETS
A close-up of Arrokoth reveals how planetary building blocks were constructed
by Staff Writers
Washington DC (SPX) Feb 14, 2020

Although water was not detected on Arrokoth (aka MU-69/Ultima-Thule) , it could be present, the authors say, but somehow masked or hidden from view. The uniform color and composition of Arrokoth's surface also support the discovery that Arrokoth was formed in a local solar nebula collapse cloud. The significance of the three studies is further discussed in a related Perspective.

The farthest, most primitive object in the Solar System ever to be visited by a spacecraft - a bi-lobed Kuiper Belt Object known as Arrokoth - is described in detail in three new reports. The reports expand upon the first published results on this object, announced in a May 2019 issue of Science, and which were based on just a small amount of data downlinked from the New Horizons spacecraft after the flyby.

The new reports are based on over ten times as much data from the flyby. Together, they provide a far more complete picture of the composition and origin of Arrokoth, and point to the resolution of a longstanding scientific controversy about how such primitive planetary building blocks called planetesimals were formed.

In the first study based on these results, William McKinnon and colleagues used simulations to better understand how Arrokoth formed. Their analysis indicates that the two lobes were previously independent bodies formed close together that assembled into the present-day object very gently.

The finding points to formation in a local collapse cloud of the solar nebula, and not by the other longstanding theory of planetesimal formation, called hierarchical accretion, in which objects from disparate parts of the nebula collided to form the object.

In another study based on these new results, John Spencer and colleagues report that Arrokoth's binary lobes are less flat than initially inferred and have larger volumes than previous estimates suggested.

Spencer and colleagues further report that Arrokoth has a smooth, lightly cratered surface, different from that of previously visited solar system bodies, indicating its face has mostly remained well-preserved since the end of the planet formation era. From the crater density, they infer an ancient age of its surface of about 4 billion years, supporting the discovery that Arrokoth was formed in a local solar nebula collapse cloud.

Finally, Will Grundy and colleagues investigate the composition, color and temperature of Arrokoth's surface and find it to be uniformly red, cold, and covered with methanol ice and unidentified complex organic molecules.

The red color is likely due to the presence of organic molecules. Grundy et al. also offer several suggestions as to how methanol could have formed on this object, including formation by cosmic ray irradiation of mixed water and methane ices.

Although water was not detected on Arrokoth, it could be present, the authors say, but somehow masked or hidden from view. The uniform color and composition of Arrokoth's surface also support the discovery that Arrokoth was formed in a local solar nebula collapse cloud. The significance of the three studies is further discussed in a related Perspective.

Research paper


Related Links
American Association For The Advancement Of Science
The million outer planets of a star called Sol


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


OUTER PLANETS
Why Uranus and Neptune are different
Bern, Switzerland (SPX) Feb 05, 2020
Uranus and Neptune are the outermost planets of the solar system. In size, possibly bulk composition, and their large distance from the Sun they are similar and clearly segregated from the inner terrestrial planets and the gas giants Jupiter and Saturn. "However, there are also striking differences between the two planets that require explanation," says Christian Reinhardt, who studied Uranus and Neptune together with Alice Chau, Joachim Stadel and Ravit Helled, all PlanetS members working at the ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

OUTER PLANETS
Space station to forge ultra-fast connections

Software defects could have destroyed Boeing Starliner on test flight

'Pale Blue Dot' Revisited

Northrop postpones Antares rocket launch in Virginia on Sunday

OUTER PLANETS
Australian Govt funds rocket fuel tank research

NASA, Europe space agency launch Solar Orbiter mission

Economical and environmentally friendly solutions on the commercial satellites market

Artemis I progresses toward launch

OUTER PLANETS
Mars 2020 equipped with laser vision and better mics

Mars 2020 rover goes coast-to-coast to prep for launch

SwRI models hint at longer timescale for Mars formation

Salt water may periodically form on the surface of Mars

OUTER PLANETS
China's Long March-5B carrier rocket arrives at launch site

China to launch more space science satellites

China's space station core module, manned spacecraft arrive at launch site

China to launch Mars probe in July

OUTER PLANETS
Understanding the impact of satellite constellations on astronomy

Maxar Technologies will build Intelsat Epic geostationary communications satellite with NASA hosted payload

Arianespace and Starsem launch 34 OneWeb satellites to help bridge the digital divide

Australia's first space incubator seeks global applicants for 2020 program

OUTER PLANETS
Researchers develop smaller, lighter radiation shielding

Making 3-D printing smarter with machine learning

NASA prepares for Moon and Mars with new addition to its deep space network

Astroscale teams with JAXA for Commercial Removal of Debris Demonstration Project

OUTER PLANETS
Distant giant planets form differently than 'failed stars'

CHEOPS space telescope takes its first pictures

Scientists discover nearest known 'baby giant planet'

Scientists pick up pattern of space radio signals for 1st time, study says

OUTER PLANETS
Pluto's icy heart makes winds blow

Why Uranus and Neptune are different

Seeing stars in 3D: The New Horizons Parallax Program

Looking back at a New Horizons New Year's to remember









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.