. 24/7 Space News .
ENERGY TECH
Generating electricity 'out of thin air'
by Staff Writers
Amherst MA (SPX) Feb 24, 2020

Graphic image of a thin film of protein nanowires generating electricity from atmospheric humidity. UMass Amherst researchers say the device can literally make electricity out of thin air.

Scientists at the University of Massachusetts Amherst have developed a device that uses a natural protein to create electricity from moisture in the air, a new technology they say could have significant implications for the future of renewable energy, climate change and in the future of medicine.

As reported in Nature, the laboratories of electrical engineer Jun Yao and microbiologist Derek Lovley at UMass Amherst have created a device they call an "Air-gen." or air-powered generator, with electrically conductive protein nanowires produced by the microbe Geobacter. The Air-gen connects electrodes to the protein nanowires in such a way that electrical current is generated from the water vapor naturally present in the atmosphere.

"We are literally making electricity out of thin air," says Yao. "The Air-gen generates clean energy 24/7." Lovely, who has advanced sustainable biology-based electronic materials over three decades, adds, "It's the most amazing and exciting application of protein nanowires yet."

The new technology developed in Yao's lab is non-polluting, renewable and low-cost. It can generate power even in areas with extremely low humidity such as the Sahara Desert. It has significant advantages over other forms of renewable energy including solar and wind, Lovley says, because unlike these other renewable energy sources, the Air-gen does not require sunlight or wind, and "it even works indoors."

The Air-gen device requires only a thin film of protein nanowires less than 10 microns thick, the researchers explain. The bottom of the film rests on an electrode, while a smaller electrode that covers only part of the nanowire film sits on top. The film adsorbs water vapor from the atmosphere. A combination of the electrical conductivity and surface chemistry of the protein nanowires, coupled with the fine pores between the nanowires within the film, establishes the conditions that generate an electrical current between the two electrodes.

The researchers say that the current generation of Air-gen devices are able to power small electronics, and they expect to bring the invention to commercial scale soon. Next steps they plan include developing a small Air-gen "patch" that can power electronic wearables such as health and fitness monitors and smart watches, which would eliminate the requirement for traditional batteries. They also hope to develop Air-gens to apply to cell phones to eliminate periodic charging.

Yao says, "The ultimate goal is to make large-scale systems. For example, the technology might be incorporated into wall paint that could help power your home. Or, we may develop stand-alone air-powered generators that supply electricity off the grid. Once we get to an industrial scale for wire production, I fully expect that we can make large systems that will make a major contribution to sustainable energy production."

Continuing to advance the practical biological capabilities of Geobacter, Lovley's lab recently developed a new microbial strain to more rapidly and inexpensively mass produce protein nanowires. "We turned E. coli into a protein nanowire factory," he says. "With this new scalable process, protein nanowire supply will no longer be a bottleneck to developing these applications."

The Air-gen discovery reflects an unusual interdisciplinary collaboration, they say. Lovley discovered the Geobacter microbe in the mud of the Potomac River more than 30 years ago. His lab later discovered its ability to produce electrically conductive protein nanowires. Before coming to UMass Amherst, Yao had worked for years at Harvard University, where he engineered electronic devices with silicon nanowires. They joined forces to see if useful electronic devices could be made with the protein nanowires harvested from Geobacter.

Xiaomeng Liu, a Ph.D. student in Yao's lab, was developing sensor devices when he noticed something unexpected. He recalls, "I saw that when the nanowires were contacted with electrodes in a specific way the devices generated a current. I found that that exposure to atmospheric humidity was essential and that protein nanowires adsorbed water, producing a voltage gradient across the device."


Related Links
University Of Massachusetts Amherst
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
Quantum technologies: New insights into superconducting processes
Munster, Germany (SPX) Feb 11, 2020
The development of a quantum computer that can solve problems, which classical computers can only solve with great effort or not at all - this is the goal currently being pursued by an ever-growing number of research teams worldwide. The reason: Quantum effects, which originate from the world of the smallest particles and structures, enable many new technological applications. So-called superconductors, which allow for processing information and signals according to the laws of quantum mechanics, ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Mike Pence Says US to Return Astronauts to Space Using American-Built Rockets Before Summer

Russia's Tikhonov May Be Replaced as Chief of Soyuz MS-16 ISS Mission Over Injury - Source

New adventures in beds and baths for spaceflight

NASA science and cargo head to Space Station

ENERGY TECH
Simple, fuel-efficient rocket engine could enable cheaper, lighter spacecraft

SpaceX announces partnership to send four tourists into deep orbit

Arianespace orbits two satellites - JCSAT-17 and GEO-KOMPSAT-2B

SpaceX launch grows Starlink constellation to more than 300 satellites

ENERGY TECH
NASA's Mars Reconnaissance Orbiter Undergoes Memory Update

Nilosyrtis Mensae - erosion on a large scale

SwRI models hint at longer timescale for Mars formation

Salt water may periodically form on the surface of Mars

ENERGY TECH
China's Long March-5B carrier rocket arrives at launch site

China to launch more space science satellites

China's space station core module, manned spacecraft arrive at launch site

China to launch Mars probe in July

ENERGY TECH
Understanding the impact of satellite constellations on astronomy

Arianespace and Starsem launch 34 OneWeb satellites to help bridge the digital divide

RUAG Space dispenses another batch of Airbus OneWeb satellites

Azercosmos and Infostellar to enter into Ground Station Partnership

ENERGY TECH
Cracks actually protect historical paintings against environmental fluctuation

Creating custom light using 2D materials

Time-resolved measurement in a memory device

Going viral: Demand for disease-themed movies and games explodes

ENERGY TECH
Random gene pulse patterns key to multicellular system development

LOFAR pioneers new way to study exoplanet environments

New technologies, strategies expanding search for extraterrestrial life

Rules of life: From a pond to the beyond

ENERGY TECH
One Step Closer to the Edge of the Solar System

TRIDENT Mission Concept Selected by NASA's Discovery Program

A close-up of Arrokoth reveals how planetary building blocks were constructed

New Horizons team discovers a critical piece of the planetary formation puzzle









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.