. | . |
Creating custom light using 2D materials by Staff Writers Geneva, Switzerland (SPX) Feb 24, 2020
Finding new semi-conductor materials that emit light is essential for developing a wide range of electronic devices. But making artificial structures that emit light tailored to our specific needs is an even more attractive proposition. However, light emission in a semi-conductor only occurs when certain conditions are met. Researchers from the University of Geneva (UNIGE), Switzerland, in collaboration with the University of Manchester, have discovered an entire class of two-dimensional materials that are the thickness of one or a few atoms. When combined together, these atomically thin crystals are capable of forming structures that emit customisable light in the desired colour. This research, published in the journal Nature Materials, marks an important step towards the future industrialisation of two-dimensional materials. Semi-conductor materials capable of emitting light are used in sectors as diverse as telecommunications, light emitting devices (LEDs) and medical diagnostics. Light emission occurs when an electron jumps inside the semi-conductor from a higher energy level to a lower level. It is the difference in energy that determines the colour of the emitted light. For light to be produced, the velocity of the electron before and after the jump must be exactly the same, a condition that depends on the specific semiconducting material considered. Only some semi-conductors can be used for light emission: for example, silicon - used to make our computers - cannot be employed for manufacturing LEDs. "We asked ourselves whether two-dimensional materials could be used to make structures that emit light with the desired colour", explains Alberto Morpurgo, a professor in the Department of Quantum Matter Physics, at the UNIGE Faculty of Science. Two-dimensional materials are perfect crystals which, like graphene, are one or a few atoms thick. Thanks to recent technical advances, different two-dimensional materials can be stacked on top of each other to form artificial structures that behave like semi-conductors. The advantage of these "artificial semi-conductors" is that the energy levels can be controlled by selecting the chemical composition and thickness of the materials that make up the structure. "Artificial semi-conductors of this kind were made for the first time only two or three years ago", explains Nicolas Ubrig, a researcher in the team led by professor Morpurgo. "When the two-dimensional materials have exactly the same structure and their crystals are perfectly aligned, this type of artificial semi-conductor can emit light. But it's very rare." These conditions are so strict that they leave little freedom to control the light emitted.
Custom light A large number of known two-dimensional semi-conductors have a zero-electron velocity in the relevant energy levels. Thanks to this diversity of compounds, many different materials can be combined, and each combination is a new artificial semi-conductor emitting light of a specific colour. "Once we had the idea, it was easy to find the materials to use to implement it", adds professor Vladimir Fal'ko from the University of Manchester. Materials that were used in the research included various transition metal dichalcogenides (such as MoS2, MoSe2 and WS2) and InSe. Other possible materials have been identified and will be useful for widening the range of colours of the light emitted by these new artificial semi-conductors.
Tailor-made light for mass industrialisation The collaboration between UNIGE and the University of Manchester took place within the framework of the EU Graphene Flagship Project.
Cracks actually protect historical paintings against environmental fluctuation Washington DC (UPI) Feb 20, 2020 Extensive cracking actually makes historic wood paneled paintings less vulnerable to environmental variability, not more. According to a new study, wood paneled paintings with significant cracking patterns are surprisingly resilient, even in substandard storage conditions. Wood paneled paintings feature three layers. The so-called ground layer, or gesso, a mixture of animal glue and white pigment, is found in between the wood and paint. When changes in humidity and temperature cause the ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |