. 24/7 Space News .
TECH SPACE
Creating custom light using 2D materials
by Staff Writers
Geneva, Switzerland (SPX) Feb 24, 2020

Artistic view of a junction of different 2D light-emitting materials.

Finding new semi-conductor materials that emit light is essential for developing a wide range of electronic devices. But making artificial structures that emit light tailored to our specific needs is an even more attractive proposition. However, light emission in a semi-conductor only occurs when certain conditions are met.

Researchers from the University of Geneva (UNIGE), Switzerland, in collaboration with the University of Manchester, have discovered an entire class of two-dimensional materials that are the thickness of one or a few atoms. When combined together, these atomically thin crystals are capable of forming structures that emit customisable light in the desired colour. This research, published in the journal Nature Materials, marks an important step towards the future industrialisation of two-dimensional materials.

Semi-conductor materials capable of emitting light are used in sectors as diverse as telecommunications, light emitting devices (LEDs) and medical diagnostics. Light emission occurs when an electron jumps inside the semi-conductor from a higher energy level to a lower level. It is the difference in energy that determines the colour of the emitted light.

For light to be produced, the velocity of the electron before and after the jump must be exactly the same, a condition that depends on the specific semiconducting material considered. Only some semi-conductors can be used for light emission: for example, silicon - used to make our computers - cannot be employed for manufacturing LEDs.

"We asked ourselves whether two-dimensional materials could be used to make structures that emit light with the desired colour", explains Alberto Morpurgo, a professor in the Department of Quantum Matter Physics, at the UNIGE Faculty of Science. Two-dimensional materials are perfect crystals which, like graphene, are one or a few atoms thick.

Thanks to recent technical advances, different two-dimensional materials can be stacked on top of each other to form artificial structures that behave like semi-conductors. The advantage of these "artificial semi-conductors" is that the energy levels can be controlled by selecting the chemical composition and thickness of the materials that make up the structure.

"Artificial semi-conductors of this kind were made for the first time only two or three years ago", explains Nicolas Ubrig, a researcher in the team led by professor Morpurgo. "When the two-dimensional materials have exactly the same structure and their crystals are perfectly aligned, this type of artificial semi-conductor can emit light. But it's very rare." These conditions are so strict that they leave little freedom to control the light emitted.

Custom light
"Our objective was to manage to combine different two-dimensional materials to emit light while being free from all constraints", continues professor Morpurgo. The physicists thought that, if they could find a class of materials where the velocity of the electrons before and after the change in energy level was zero, it would be an ideal scenario which would always meet the conditions for light emission, regardless of the details of the crystal lattices and their relative orientation.

A large number of known two-dimensional semi-conductors have a zero-electron velocity in the relevant energy levels. Thanks to this diversity of compounds, many different materials can be combined, and each combination is a new artificial semi-conductor emitting light of a specific colour.

"Once we had the idea, it was easy to find the materials to use to implement it", adds professor Vladimir Fal'ko from the University of Manchester. Materials that were used in the research included various transition metal dichalcogenides (such as MoS2, MoSe2 and WS2) and InSe. Other possible materials have been identified and will be useful for widening the range of colours of the light emitted by these new artificial semi-conductors.

Tailor-made light for mass industrialisation
"The great advantage of these 2D materials, thanks to the fact that there are no more preconditions for the emission of light, is that they provide new strategies for manipulating the light as we see fit, with the energy and colour that we want to have", continues Ubrig. This means it is possible to devise future applications on an industrial level, since the emitted light is robust and there is no longer any need to worry about the alignment of atoms.

The collaboration between UNIGE and the University of Manchester took place within the framework of the EU Graphene Flagship Project.

Research paper


Related Links
University of Geneva
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Cracks actually protect historical paintings against environmental fluctuation
Washington DC (UPI) Feb 20, 2020
Extensive cracking actually makes historic wood paneled paintings less vulnerable to environmental variability, not more. According to a new study, wood paneled paintings with significant cracking patterns are surprisingly resilient, even in substandard storage conditions. Wood paneled paintings feature three layers. The so-called ground layer, or gesso, a mixture of animal glue and white pigment, is found in between the wood and paint. When changes in humidity and temperature cause the ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
NASA science and cargo head to Space Station

Geneva invention show delayed over novel coronavirus

Source reveals timeline for US first launch of manned vehicle to ISS after nearly decade-long hiatus

US negotiating to buy one or two seats on Soyuz

TECH SPACE
SpaceX launch grows Starlink constellation to more than 300 satellites

Electric solid propellant - can it take the heat?

Artemis I progresses toward launch

Aerojet Rocketdyne wins DARPA hypersonic propulsion technology contract

TECH SPACE
Nilosyrtis Mensae - erosion on a large scale

SwRI models hint at longer timescale for Mars formation

Salt water may periodically form on the surface of Mars

Mars 2020 rover goes coast-to-coast to prep for launch

TECH SPACE
China's Long March-5B carrier rocket arrives at launch site

China to launch more space science satellites

China's space station core module, manned spacecraft arrive at launch site

China to launch Mars probe in July

TECH SPACE
Understanding the impact of satellite constellations on astronomy

Arianespace and Starsem launch 34 OneWeb satellites to help bridge the digital divide

RUAG Space dispenses another batch of Airbus OneWeb satellites

Azercosmos and Infostellar to enter into Ground Station Partnership

TECH SPACE
Cracks actually protect historical paintings against environmental fluctuation

Going viral: Demand for disease-themed movies and games explodes

Researchers develop smaller, lighter radiation shielding

Army researchers develop new method for analyzing metal

TECH SPACE
Earth's cousins: Upcoming missions to look for 'biosignatures' in exoplanet atmospheres

Looking for aliens who might be looking for us

Scientists discover nearest known 'baby giant planet'

Scientists pick up pattern of space radio signals for 1st time, study says

TECH SPACE
A close-up of Arrokoth reveals how planetary building blocks were constructed

New Horizons team discovers a critical piece of the planetary formation puzzle

Pluto's icy heart makes winds blow

Why Uranus and Neptune are different









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.