. 24/7 Space News .
TECH SPACE
Time-resolved measurement in a memory device
by Staff Writers
Zurich, Switzerland (SPX) Feb 24, 2020

The chip produced by IMEC for the experiments at ETH. The tunnel junctions used to measure the timing of the magnetisation reversal are located at the centre (Image courtesy of IMEC).

At the Department for Materials of the ETH in Zurich, Pietro Gambardella and his collaborators investigate tomorrow's memory devices. They should be fast, retain data reliably for a long time and also be cheap. So-called magnetic "random access memories" (MRAM) achieve this quadrature of the circle by combining fast switching via electric currents with durable data storage in magnetic materials.

A few years ago researchers could already show that a certain physical effect - the spin-orbit torque - makes particularly fast data storage possible. Now Gambardella's group, together with the R and D-centre IMEC in Belgium, managed to temporally resolve the exact dynamics of a single such storage event - and to use a few tricks to make it even faster.

Magnetising with single spins
To store data magnetically, one has to invert the direction of magnetisation of a ferromagnetic (that is, permanently magnetic) material in order to represent the information as a logic value, 0 or 1. In older technologies, such as magnetic tapes or hard drives, this is achieved through magnetic fields produced inside current-carrying coils.

Modern MRAM-memories, by contrast, directly use the spins of electrons, which are magnetic, much like small compass needles, and flow directly through a magnetic layer as an electric current. In Gambardella's experiments, electrons with opposite spin directions are spatially separated by the spin-orbit interaction. This, in turn, creates an effective magnetic field, which can be used to invert the direction of magnetisation of a tiny metal dot.

"We know from earlier experiments, in which we stroboscopically scanned a single magnetic metal dot with X-rays, that the magnetisation reversal happens very fast, in about a nanosecond", says Eva Grimaldi, a post-doc in Gambardella's group. "However, those were mean values averaged over many reversal events. Now we wanted to know how exactly a single such event takes place and to show that it can work on an industry-compatible magnetic memory device."

Time resolution through a tunnel junction
To do so, the researchers replaced the isolated metal dot by a magnetic tunnel junction. Such a tunnel junction contains two magnetic layers separated by an insulation layer that is only one nanometre thick. Depending on the spin direction - along the magnetisation of the magnetic layers, or opposite to it - the electrons can tunnel through that insulating layer more or less easily. This results in an electrical resistance that depends on the alignment of the magnetization in one layer with respect to the other and thus represents "0" and "1".

From the time dependence of that resistance during a reversal event, the researchers could reconstruct the exact dynamics of the process. In particular, they found that the magnetisation reversal happens in two stages: an incubation stage, during which the magnetisation stays constant, and the actual reversal stage, which lasts less than a nanosecond.

Small fluctuations
"For a fast and reliable memory device it is essential that the time fluctuations between the individual reversal events are minimized", explains Gambardella's PhD student Viola Krizakova. So, based on their data the scientists developed a strategy to make those fluctuations as small as possible.

To that end, they changed the current pulses used to control the magnetisation reversal in such a way as to introduce two additional physical phenomena. The so-called spin-transfer torque as well as a short voltage pulse during the reversal stage now resulted in a reduction of the total time for the reversal event to less than 0,3 nanoseconds, with temporal fluctuations of less than 0,2 nanoseconds.

Application-ready technology
"Putting all of this together, we have found a method whereby data can be stored in magnetic tunnel junctions virtually without any error and in less than a nanosecond", says Gambardella. Moreover, the collaboration with the research centre IMEC made it possible to test the new technology directly on an industry-compatible wafer. Kevin Garello, a former post-doc from Gambardella's lab, produced the chips containing the tunnel contacts for the experiments at ETH and optimized the materials for them. In principle, the technology would, therefore, be immediately ready for use in a new generation of MRAM.

Gambardella stresses that MRAM memories are particularly interesting because, differently from conventional main memories such as SRAM or DRAM, they don't lose their information when the computer is switched off, but are still equally fast. He concedes, though, that the market for MRAM memories currently does not demand such high writing speeds since other technical bottlenecks such as power losses caused by large switching currents limit the access times. In the meantime, he and his co-workers are already planning further improvements: they want to shrink the tunnel junctions and use different materials that use current more efficiently.

Research paper


Related Links
ETH Zurich
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Amazon wins suspension of $10 bn 'JEDI' contract to Microsoft
San Francisco (AFP) Feb 14, 2020
A federal judge on Thursday temporarily blocked the US military from awarding a $10 billion cloud computing contract to Microsoft, after Amazon claimed the process was tainted by politics. A preliminary injunction requested by Amazon was issued by Judge Patricia Campbell-Smith, barring the Department of Defense from starting work on the contract known as JEDI, according to a summary of the ruling. Details of the ruling were sealed for unspecified reasons. Amazon has alleged it was shut out ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
NASA science and cargo head to Space Station

Geneva invention show delayed over novel coronavirus

Source reveals timeline for US first launch of manned vehicle to ISS after nearly decade-long hiatus

US negotiating to buy one or two seats on Soyuz

TECH SPACE
SpaceX launch grows Starlink constellation to more than 300 satellites

Electric solid propellant - can it take the heat?

Artemis I progresses toward launch

Aerojet Rocketdyne wins DARPA hypersonic propulsion technology contract

TECH SPACE
Nilosyrtis Mensae - erosion on a large scale

SwRI models hint at longer timescale for Mars formation

Salt water may periodically form on the surface of Mars

Mars 2020 rover goes coast-to-coast to prep for launch

TECH SPACE
China's Long March-5B carrier rocket arrives at launch site

China to launch more space science satellites

China's space station core module, manned spacecraft arrive at launch site

China to launch Mars probe in July

TECH SPACE
Understanding the impact of satellite constellations on astronomy

Arianespace and Starsem launch 34 OneWeb satellites to help bridge the digital divide

RUAG Space dispenses another batch of Airbus OneWeb satellites

Azercosmos and Infostellar to enter into Ground Station Partnership

TECH SPACE
Cracks actually protect historical paintings against environmental fluctuation

Going viral: Demand for disease-themed movies and games explodes

Researchers develop smaller, lighter radiation shielding

Army researchers develop new method for analyzing metal

TECH SPACE
Earth's cousins: Upcoming missions to look for 'biosignatures' in exoplanet atmospheres

Looking for aliens who might be looking for us

Scientists discover nearest known 'baby giant planet'

Scientists pick up pattern of space radio signals for 1st time, study says

TECH SPACE
A close-up of Arrokoth reveals how planetary building blocks were constructed

New Horizons team discovers a critical piece of the planetary formation puzzle

Pluto's icy heart makes winds blow

Why Uranus and Neptune are different









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.