. 24/7 Space News .
TIME AND SPACE
'Exotic hadrons' research to advance knowledge of nuclear physics
by Staff Writers
Bloomington IN (SPX) Jan 26, 2023

An artist rendition of three exotic hadron candidates: a hybrid meson, a tetraquark, and a pentaquark.

Indiana University researchers are part of a five-year, $11.24 million initiative from the U.S. Department of Energy to solve challenging and complex issues central to advancing knowledge in nuclear physics. The effort brings together the world's top nuclear theorists to advance theoretical frameworks for the accurate prediction of nuclear interactions and properties of nuclear matter.

As part of this work, IU's Adam Szczepaniak is leading a project called "ExoHad," which explores the physics of exotic hadrons - a largely unexplored group of subatomic particles governed by rules that still need to be discovered. Of the Department of Energy's award, $1.8 million supports ExoHad, which includes other IU researchers and collaborators from across the world.

"We are excited to work on these very important issues, which may ultimately provide us with a better understanding of matter itself," said Szczepaniak, a professor of physics in the IU Bloomington College of Arts and Sciences' Department of Physics and director of the Joint Physics Analysis Center. "We are expecting a lot of novel phenomena that we have not seen yet, even though we cannot predict exactly what those will be."

While nuclear physics examines particles at an incredibly small scale, it can have a big impact - helping advance understanding of the universe itself. Having a thorough understanding of nuclear physics can lead to advancements in many fields, including medicine or climatology, Szczepaniak said.

To better understand exotic hadron physics, Szczepaniak's project brings together three teams: one conducting experiments, one developing theory and numerical simulations, and one that will combine the results of experiments with predictions from the calculations. The researchers' approach emphasizes the need for common tools, based on hadron scattering amplitudes, to simultaneously analyze experimental data and numerical simulation. They hope their approach will allow for a more robust determination of the spectrum of exotic hadron resonances.

"The exotic hadrons that the collaboration is hoping to unravel are expected to contain many gluons, which are the most mysterious particles know in physics," Szczepaniak said. "They only exist deep inside atomic nuclei and are responsible for over 95 percent of visible matter in the universe, but how this happens is still a mystery."

This project allows Szczepaniak and his colleagues to apply knowledge learned as members of the Joint Physics Analysis Center. The center started in 2013 to provide theory support to experiments taking place at the Thomas Jefferson National Accelerator Facility in Virginia and later expanded to laboratories around the world. In the decade since, the center has produced over 100 research papers and mentored more than two dozen students and postdoctoral researchers. With support from IU's Global Classroom Initiative, the center has developed specialized graduate courses that have connected students and more senior researchers from around the world.

IU student researchers are critical to this work, said Szczepaniak, who hopes the project will inspire students to pursue this field and help build the next generation of nuclear physicists.

Other IU collaborators on the project include Jinfeng Liao, professor of physics, and Emilie Passemar, associate professor of physics.


Related Links
Joint Physics Analysis Center
Indiana University
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Shedding light on quantum photonics
Santa Barbara CA (SPX) Jan 23, 2023
As buzz grows ever louder over the future of quantum, researchers everywhere are working overtime to discover how best to unlock the promise of super-positioned, entangled, tunneling or otherwise ready-for-primetime quantum particles, the ability of which to occur in two states at once could vastly expand power and efficiency in many applications. Developmentally, however, quantum devices today are "about where the computer was in the 1950s," which it is to say, the very beginning. That's accordi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Astronauts conduct first ISS spacewalk of 2023

Zero-Covid left in dust as Chinese revellers fuel travel boom

RIT scientists help rediscover earliest known star map using multispectral imaging

Crop seeds, microbial strains tested in China's two space missions unveiled

TIME AND SPACE
MIT Gas Turbine Laboratory prepares to jet into the future

NASA, DARPA will test nuclear engine for future Mars missions

Boeing CST-100 Starliner Crew and Service Modules Mated

DARPA, NASA Collaborate on Nuclear Thermal Rocket Engine

TIME AND SPACE
Sols 3718-3720: Go For Drilling at Encanto

Ingenuity's 40th flight on Mars tracks a rocky road

ALUULA Composites selected for future Mars missions

Our Encanto: Sols 3716-3717

TIME AND SPACE
Chinese astronauts send Spring Festival greetings from space station

China to launch 200-plus spacecraft in 2023

China's space industry hits new heights

China's first private sector 2023 rocket launch up, up and away

TIME AND SPACE
Hawkeye 360 launches Cluster 6 satellites aboard inaugural Rocket Lab Electron flight from Virginia

UK Space Agency announces new funding for satellite communications

Britain's Tim Peake steps down from ESA astronaut corps

Amazonas Nexus at Cape Canaveral for final processing

TIME AND SPACE
The last mysteries of mica

Novel technique developed to obtain key chemical industry input without emitting CO2

Temperature-sensing building material changes color to save energy

MLU physicists solve mystery of two-dimensional quasicrystal formation from metal oxides

TIME AND SPACE
Rare opportunity to study short-lived volcanic island reveals sulfur-metabolizing microbes

New small laser device can help detect signs of life on other planets

How do rocky planets really form

NASA's Webb confirms its first exoplanet

TIME AND SPACE
Exotic water ice contributes to understanding of magnetic anomalies on Neptune and Uranus

From Europe to Jupiter via Kourou

Airbus finalises JUICE ready for its mission to Jupiter

Galileo tribute unveiled as Juice says 'Farewell, Europe'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.