. | . |
Building planets from protoplanetary disks by Staff Writers Boston MA (SPX) Nov 02, 2021
Planets and their stars form from the same reservoir of nebular material and their chemical compositions should therefore be correlated but the observed compositions of planets do not match completely those of their central stars. In our Solar system, for example, all the rocky planets and planetesimals contain near-solar proportions of refractory elements (elements like aluminum that condense from a gas when the temperature falls below about 1500 kelvin) but are depleted in volatile elements (those that evaporate easily, like nitrogen). Astronomers think that this was the result of planets forming by the coalescence of already-condensed mineral dust. As the initial, cold molecular cloud core collapses and a disc forms, heating from the new star (plus the viscosity of the disc) can vaporize some of the primordial condensed material - forcing the condensation sequence to begin anew but now under higher temperature and pressure conditions that evolve relatively rapidly. Astronomers also analyze meteorites of various types to determine their chemical compositions. Depending upon the properties of the initial molefular cloud core and the disc, the temperatures produced during planet formation may not have been sufficient to vaporize the most refractory of the pre-existing material. Since different minerals in planetesimals condense under different conditions, times, and places, the overall situation is complex, making it hard to understand the observed chemistry of planets. CfA geologist Michail Petaev and his colleagues simulated the collapse of a molecular cloud core and the formation of the star, disk and planets, and analyzed the evolving distribution of temperatures across the disk to infer the mineral condensation sequence. They find that the properties of the initial cloud core significantly affect the maximum temperatures reached in the disk and the resultant compositions of the planets and asteroids; the maximum temperature occurs around the end of the collapse phase, after a few hundreds of thousands of years. They also find that while the composition of the star is similar to that of the molecular cloud core, the star might be slightly depleted in some of the most refractory elements - and thus the stellar composition may not be a good approximation to the initial composition of the core. Only cloud cores with high initial temperatures (or low disk rotation) will produce refractory-rich planets. Significantly, they conclude that in order to reproduce the composition seen in Solar system meteorites and the terrestrial planets either the initial core had rare properties like temperatures near 2000 kelvin (well above the expected median value of 1250 kelvin), or else some other source of heating must have raised the protoplanetary disk's temperature.
Research Report: "Maximum Temperatures in Evolving Protoplanetary Discs and Composition of Planetary Building Blocks"
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |