. 24/7 Space News .
EXO WORLDS
How to find hidden oceans on distant worlds? use chemistry
by Staff Writers
Pasadena CA (SPX) Oct 28, 2021

Planets that are between 1.7 and 3.5 times the diameter of Earth are sometimes called "sub-Neptunes." There are no planets in this size range in Earth's solar system, but scientists think many sub-Neptunes have thick atmospheres, potentially cloaking rocky surfaces or liquid oceans. Credit: NASA/JPL-Caltech

A new study shows how the chemicals in an exoplanet's atmosphere can, in some cases, reveal whether or not the temperature on its surface is too hot for liquid water.

In our solar system, planets are either small and rocky (like Earth) or large and gaseous (like Neptune). But around other stars, astronomers have found planets that fall in between - worlds slightly larger than Earth but smaller than Neptune. These planets may have rocky surfaces or liquid-water oceans, but most are likely to be topped with atmospheres that are many times thicker than Earth's and opaque.

In the new study, accepted in the Astrophysical Journal Letters, researchers show how the chemistry of those atmospheres could reveal clues about what lies beneath - specifically, which planets are too hot to support liquid-water oceans. Since liquid water is a necessary ingredient for life as we know it, this technique could help scientists narrow their search for potentially habitable exoplanets, or planets beyond our solar system. More than 4,500 exoplanets have been confirmed in our galaxy, with over 7,700 candidates yet to be confirmed, but scientists estimate that hundreds of billions of exoplanets exist in our galaxy.

Some NASA space telescopes equipped with spectrometers can reveal the chemical makeup of an exoplanet's atmosphere. A chemical profile of Earth wouldn't be able to reveal pictures of, say, cows or humans on the planet's surface, but it would show carbon dioxide and methane produced by mammals, and oxygen produced by trees. None of these chemicals alone would be a sign of life, but in combination they would point to the possibility that our planet is inhabited.

The new paper shows which chemicals might point to hidden oceans on exoplanets between 1.7 and 3.5 times the diameter of Earth. Since Neptune is about four times Earth's diameter, these planets are sometimes called "sub-Neptunes."

A thick atmosphere on a sub-Neptune planet would trap heat on the surface and raise the temperature. If the atmosphere reaches a certain threshold - typically about 1,430 degrees Fahrenheit (770 degrees Celsius) - it will undergo a process called thermochemical equilibrium that changes its chemical profile. After thermochemical equilibrium occurs - and assuming the planet's atmosphere is composed mostly of hydrogen, which is typical for gaseous exoplanets - carbon and nitrogen will predominantly be in the form of methane and ammonia.

Those chemicals would largely be missing in a cooler, thinner atmosphere where thermochemical equilibrium has not occurred. In that case, the dominant forms of carbon and nitrogen would be carbon dioxide and molecules of two nitrogen atoms.

A liquid-water ocean underneath the atmosphere would leave additional signs, according to the study, including the absence of nearly all stray ammonia, which would be dissolved in the ocean. Ammonia gas is highly soluble in water, depending on the pH of the ocean (its level of acidity). Over a wide range of plausible ocean pH levels the researchers found the atmosphere should be virtually free of ammonia when there is a massive ocean underneath.

In addition, there would be more carbon dioxide than carbon monoxide in the atmosphere; by contrast, after thermochemical equilibrium, there should be more carbon monoxide than carbon dioxide if there are detectable amounts of either.

"If we see the signatures of thermochemical equilibrium, we would conclude that the planet is too hot to be habitable," said Renyu Hu, a researcher at NASA's Jet Propulsion Laboratory, who led the study. "Vice versa, if we do not see the signature of thermochemical equilibrium and also see signatures of gas dissolved in a liquid-water ocean, we would take those as a strong indication of habitability."

NASA's James Webb Space Telescope, set to launch Dec. 18, will carry a spectrometer capable of studying exoplanet atmospheres. Scientists like Hu are working to anticipate what kinds of chemical profiles Webb will see in those atmospheres and what they could reveal about these distant worlds. The observatory has the capabilities to identify signs of thermochemical equilibrium in sub-Neptune atmospheres - in other words, signs of a hidden ocean - as identified in the paper.

As Webb discovers new planets or does more in-depth studies of known planets, this information could help scientists decide which of them are worthy of additional observations, especially if scientists want to target planets that might harbor life.

"We don't have direct observational evidence to tell us what the common physical characteristics for sub-Neptunes are," said Hu. "Many of them may have massive hydrogen atmospheres, but quite a few could still be 'ocean planets.' I hope this paper will motivate many more observations in the near future to find out."


Related Links
James Webb Space Telescope
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
Could this be a planet in another galaxy?
Huntsville AL (SPX) Oct 26, 2021
Using ESA's XMM-Newton and NASA's Chandra X-ray space telescopes, astronomers have made an important step in the quest to find a planet outside of the Milky Way. Spotting a planet in another galaxy is hard, and even though astronomers know that they should exist, no planetary systems outside of the Milky Way have been confirmed so far. Because the light from another galaxy is packed into a tiny area on the sky, it is very difficult for telescopes to distinguish one star from another, let alone a p ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Making space travel inclusive for all

Russia will fly four tourists into space in 2024

Could Russia's Zeus TEM be a gamechanger for India's space ambitions

New roles, combined offices for NASA Administrator Leadership Team

EXO WORLDS
NASA seeks input to position mega-rocket for long-term exploration

Crew-3 astronauts launch to Space Station alongside microgravity research

NASA, SpaceX reschedule Crew-3 launch due to weather

NASA sending four astronauts to ISS on Sunday

EXO WORLDS
You can help train NASA's rovers to better explore Mars

Ingenuity Mars Helicopter Flight 14 Successful

NASA Mars Rover and Helicopter models to go on national tour

China's Mars orbiter resumes communications with Earth

EXO WORLDS
Chinese astronauts arrive at space station for longest mission

China's longest-yet crewed space mission impressive, expert says

Chinese astronaut bridges gender gap

Test conducted to verify spacecraft technology, FM says

EXO WORLDS
Geraldine Naja, Director of Commercialisation, Industry and Procurement

NEOM Tech and Digital Holding Company and OneWeb sign $200m JV for satellite network

Amazon to launch two Project Kuiper satellites next fall

Verizon to use Amazon satellites for broadband Internet in rural areas

EXO WORLDS
Bio-inspired autonomous materials

AiRANACULUS awarded Phase II NASA contract for Advanced Space Communications System

Shape-shifting materials with infinite possibilities

Smart material switches between heating and cooling in minutes

EXO WORLDS
Breakthrough Listen releases analysis of previously detected signal

Scientists measure the atmosphere of a planet 340 light-years away

The upside-down orbits of a multi-planetary system

Searching for Earth 2 zoom in on a star

EXO WORLDS
Science results offer first 3D view of Jupiter's atmosphere

Jupiter's Great Red Spot is deeper than thought, shaped like lens

Using Charon-light Researchers Capture Pluto's Dark Side

Juno peers deep into Jupiter's colorful belts and zones









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.