. | . |
Rocky Exoplanets Are Even Stranger Than We Thought by Staff Writers Kamuela HI (SPX) Nov 03, 2021
Astronomers have discovered thousands of planets orbiting stars in our galaxy - known as exoplanets. However, it's difficult to know what exactly these planets are made of, or whether any resemble Earth. To try to find out, astronomer Siyi Xu of NSF's NOIRLab partnered with geologist Keith Putirka of California State University, Fresno, to study the atmospheres of what are known as polluted white dwarfs. These are the dense, collapsed cores of once-normal stars like the Sun that contain foreign material from planets, asteroids, or other rocky bodies that once orbited the star but eventually fell into the white dwarf and "contaminated" its atmosphere. By looking for elements that wouldn't naturally exist in a white dwarf's atmosphere (anything other than hydrogen and helium), scientists can figure out what the rocky planetary objects that fell into the star were made of. Putirka and Xu looked at 23 polluted white dwarfs, all within about 650 light-years of the Sun, where calcium, silicon, magnesium, and iron had been measured with precision using W. M. Keck Observatory's High-Resolution Echelle Spectrometer (HIRES) on Maunakea in Hawai'i, the Hubble Space Telescope, and other observatories. The scientists then used the measured abundances of those elements to reconstruct the minerals and rocks that would form from them. "Combining the high sensitivity of Keck's HIRES instrument and Hubble's Cosmic Origins Spectrograph is the best way to measure the chemical compositions of extrasolar planetary materials accreted onto polluted white dwarfs," said Xu. Putirka and Xu's results are published in Nature Communications. They found that these white dwarfs have a much wider range of compositions than any of the inner planets in our solar system, suggesting their planets had a wider variety of rock types. In fact, some of the compositions are so unusual that Putirka and Xu had to create new names (such as "quartz pyroxenites" and "periclase dunites") to classify the novel rock types that must have existed on those planets. "While some exoplanets that once orbited polluted white dwarfs appear similar to Earth, most have rock types that are exotic to our solar system," said Xu. "They have no direct counterparts in the solar system." Putirka describes what these new rock types might mean for the rocky worlds they belong to. "Some of the rock types that we see from the white dwarf data would dissolve more water than rocks on Earth and might impact how oceans are developed," he explained. "Some rock types might melt at much lower temperatures and produce thicker crust than Earth rocks, and some rock types might be weaker, which might facilitate the development of plate tectonics." Earlier studies of polluted white dwarfs had found elements from rocky bodies, including calcium, aluminum, and lithium. However, Putirka and Xu explain that those are minor elements (which typically make up a small part of an Earth rock) and measurements of major elements (which make up a large part of an Earth rock), especially silicon, are needed to truly know what kind of rock types would have existed on those planets. In addition, Putirka and Xu state that the high levels of magnesium and low levels of silicon measured in the white dwarfs' atmospheres suggest that the rocky debris detected likely came from the interiors of the planets - from the mantle, not their crust. Some previous studies of polluted white dwarfs reported signs that continental crust existed on the rocky planets that once orbited those stars, but Putirka and Xu found no evidence of crustal rocks. However, the observations do not completely rule out that the planets had continental crust or other crust types. "We believe that if crustal rock exists, we are unable to see it, probably because it occurs in too small a fraction compared to the mass of other planetary components, like the core and mantle, to be measured," Putirka stated. According to Xu, the pairing of an astronomer and a geologist was the key to unlocking the secrets hidden in the atmospheres of the polluted white dwarfs. "I met Keith Putirka at a conference and was excited that he could help me understand the systems that I was observing. He taught me geology and I taught him astronomy, and we figured out how to make sense of these mysterious exoplanetary systems."
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |