![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Los Alamos NM (SPX) Nov 03, 2021
A team of researchers used 3D particle simulations to model the acceleration of ions and electrons in a physical process called magnetic reconnection. The results could contribute to the understanding and forecasting of energetic particles released during magnetic reconnection, which could help protect space assets and advance space exploration. "For the first time ever, we can use 3D simulations from fundamental physics principles to model the production of energetic ions and electrons in those magnetic explosions in space," said paper author Qile Zhang, of the Nuclear and Particle Physics, Astrophysics and Cosmology group at Los Alamos National Laboratory. Magnetic reconnection can cause magnetic explosions, which result in events such as solar flares and geomagnetic storms near Earth; these explosions produce energetic-particle radiation that is harmful to spacecraft and humans. The research team discovered the underlying mechanisms controlling particle acceleration enabled by the 3D kink motions of plasmas - the collection of charged particles - and magnetic fields.
Research Report: "Efficient Nonthermal Ion and Electron Acceleration Enabled by the Flux-Rope Kink Instability in 3D Nonrelativistic Magnetic Reconnection"
![]() ![]() Carbon nanotubes could help electronics withstand outer space's harsh conditions Washington DC (SPX) Oct 28, 2021 Space missions, such as NASA's Orion that will take astronauts to Mars, are pushing the limits of human exploration. But during their transit, spacecrafts encounter a continuous stream of damaging cosmic radiation, which can harm or even destroy onboard electronics. To extend future missions, researchers reporting in ACS Nano show that transistors and circuits with carbon nanotubes can be configured to maintain their electrical properties and memory after being bombarded by high amounts of radiation. ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |