. 24/7 Space News .
OUTER PLANETS
Scientists find strange black 'superionic ice' that could exist inside other planets
by Staff Writers
Lemont IL (SPX) Oct 29, 2021

Scientists think similar conditions exist at the interiors of Neptune and Uranus, and other cold, rocky planets like them elsewhere in the universe.

Using the Advanced Photon Source, scientists have recreated the structure of ice formed at the center of planets like Neptune and Uranus.

Everyone knows about ice, liquid and vapor - but, depending on the conditions, water can actually form more than a dozen different structures. Scientists have now added a new phase to the list: superionic ice.

This type of ice forms at extremely high temperatures and pressures, such as those deep inside planets like Neptune and Uranus. Previously superionic ice had only been glimpsed in a brief instant as scientists sent a shockwave through a droplet of water, but in a new study published in Nature Physics, scientists found a way to reliably create, sustain and examine the ice.

"It was a surprise - everyone thought this phase wouldn't appear until you are at much higher pressures than where we first find it," said study co-author Vitali Prakapenka, a University of Chicago research professor and beamline scientist at the Advanced Photon Source (APS), a U.S. Department of Energy (DOE) Office of Science user facility at the DOE's Argonne National Laboratory. "But we were able to very accurately map the properties of this new ice, which constitutes a new phase of matter, thanks to several powerful tools."

Even as humans have peered back in time to the beginning of the universe - and down to the smallest particles that make up all matter - we still don't understand exactly what lurks deep inside the Earth, let alone inside the sibling planets in our solar system. Scientists have only dug about seven and a half miles beneath Earth's surface before the equipment started to melt due to the extreme heat and pressure. Under those conditions, rock behaves more like plastic, and the structures of even basic molecules like water start to shift.

Since we can't reach these places physically, scientists must turn to the laboratory to recreate conditions of extreme heat and pressure.

Prakapenka and his colleagues use the APS, a massive accelerator that drives electrons to extremely high speeds close to the speed of light to generate brilliant beams of X-rays. They squeeze their samples between two pieces of diamond - the hardest substance on Earth - to simulate the intense pressures, and then shoot lasers through the diamonds to heat the sample up. Finally, they send a beam of X-rays through the sample, and piece together the arrangement of the atoms inside based on how the X-rays scatter off the sample.

When they first ran the experiments, Prakapenka saw readings of the structure that were much different than he was expecting. He thought something had gone wrong, and there had been an unwanted chemical reaction, which often happens with water in such experiments. "But when I turned off the laser and the sample returned to room temperature, the ice went back to its original state," he said. "That means it was a reversible, structural change, not a chemical reaction."

Looking at the structure of the ice, the team realized it had a new phase on its hands. They were able to precisely map its structure and properties.

"Imagine a cube, a lattice with oxygen atoms at the corners connected by hydrogen," Prakapenka said. "When it transforms into this new superionic phase, the lattice expands, allowing the hydrogen atoms to migrate around while the oxygen atoms remain steady in their positions. It's kind of like a solid oxygen lattice sitting in an ocean of floating hydrogen atoms."

This has consequences for how the ice behaves: It becomes less dense, but significantly darker because it interacts differently with light. But the full range of the chemical and physical properties of superionic ice have yet to be explored. "It's a new state of matter, so it basically acts as a new material, and it may be different from what we thought," Prakapenka said.

The findings were also a surprise, because while theoretical scientists had predicted this phase, most models thought it would not appear until the water was compressed to more than 50 gigapascals of pressure (about the same as the conditions inside rocket fuel as it detonates for liftoff). But these experiments were only at 20 gigapascals. "Sometimes you are handed surprises like this," Prakapenka said.

But mapping the exact conditions where different phases of ice occur is important for, among other things, understanding planet formation and even where to look for life on other planets. Scientists think similar conditions exist at the interiors of Neptune and Uranus, and other cold, rocky planets like them elsewhere in the universe.

The properties of these ices play a role in a planet's magnetic fields, which have a huge impact on its ability to host life: Earth's powerful magnetic fields protect us from harmful incoming radiation and cosmic rays, whereas the surfaces of barren planets Mars and Mercury are exposed. Knowing the conditions that affect magnetic field formation can guide scientists as they search for stars and planets in other solar systems that might host life.

Prakapenka said there are many more angles to explore, such as conductivity and viscosity, chemical stability, what changes when the water mixes with salts or other minerals, the way it often does deep beneath the Earth's surface. "This should stimulate a lot more studies," he said.

The synchrotron X-ray diffraction was performed at GeoSoilEnviroCARS, a beamline on the Advanced Photon Source at Argonne National Laboratory, and optical spectroscopy was performed at the Carnegie Institution for Science. The other authors on the paper were Nicholas Holtgrewe of CARS and the Carnegie Institution of Washington, Sergey Lobanov of the Carnegie Institution and the GFZ German Research Center for Geosciences, and Alexander Goncharov of the Carnegie Institution.

Research Report: "Structure and properties of two superionic ice phases"


Related Links
Argonne National Laboratory
The million outer planets of a star called Sol


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


OUTER PLANETS
Using Charon-light Researchers Capture Pluto's Dark Side
Boulder CO (SPX) Oct 28, 2021
NASA's New Horizons spacecraft made history by returning the first close-up images of Pluto and its moons. Now, through a series of clever methods, researchers led by Tod Lauer of the National Science Foundation's National Optical Infrared Astronomy Research Lab in Tucson, Arizona, on the New Horizons team have expanded that photo album to include the portion of Pluto's landscape that wasn't directly illuminated by sunlight - what the team calls Pluto's "dark side." After flying within 7,800 miles ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

OUTER PLANETS
Making space travel inclusive for all

Russia will fly four tourists into space in 2024

Could Russia's Zeus TEM be a gamechanger for India's space ambitions

Humidity caused corrosion of Starliner capsule valves, Boeing, NASA say

OUTER PLANETS
NASA, SpaceX reschedule Crew-3 launch due to weather

Kuaizhou lifts off successfully, places satellite in orbit

NASA seeks input to position mega-rocket for long-term exploration

Crew-3 astronauts launch to Space Station alongside microgravity research

OUTER PLANETS
Ingenuity Mars Helicopter Flight 14 Successful

You can help train NASA's rovers to better explore Mars

NASA Mars Rover and Helicopter models to go on national tour

China's Mars orbiter resumes communications with Earth

OUTER PLANETS
Chinese astronauts arrive at space station for longest mission

China's longest-yet crewed space mission impressive, expert says

Chinese astronaut bridges gender gap

Test conducted to verify spacecraft technology, FM says

OUTER PLANETS
NEOM Tech and Digital Holding Company and OneWeb sign $200m JV for satellite network

Verizon to use Amazon satellites for broadband Internet in rural areas

From Polar Bears to Polar Orbits

Conclusions from Satellite Constellations 2 Released

OUTER PLANETS
Gaming giant Epic pulls back on Fortnite China over crackdown

Reinventing steelmaking for a green revolution

VR technology enables users to see individual cells in human body

The New York 'canners' recycling discarded bottles to survive

OUTER PLANETS
Scientists measure the atmosphere of a planet 340 light-years away

The upside-down orbits of a multi-planetary system

How to find hidden oceans on distant worlds? use chemistry

Are we alone in the Universe? NASA calls for a "New Framework"

OUTER PLANETS
Scientists find strange black 'superionic ice' that could exist inside other planets

Science results offer first 3D view of Jupiter's atmosphere

Juno peers deep into Jupiter's colorful belts and zones

Jupiter's Great Red Spot is deeper than thought, shaped like lens









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.