. 24/7 Space News .
SPACE MEDICINE
NASA Twins Study finds spaceflight affects gut bacteria
by Staff Writers
Chicago IL (SPX) Apr 12, 2019

Identical twin brothers: retired astronaut Mark Kelly (left) and Scott Kelly.

Research from NASA's landmark Twins Study found that extended spaceflight affects the human gut microbiome. During his yearlong stay on the International Space Station (ISS), astronaut Scott Kelly experienced a shift in the ratio of two major categories of bacteria in his gut microbiome. The diversity of bacteria in his microbiome, however, did not change during spaceflight, which the Northwestern University-led research team found encouraging.

Gut health affects digestion, metabolism and immunity; and, more recently, changes in the microbiome have been linked to changes in bones, muscles and the brain.

The study's finding could help physicians and researchers pinpoint and implement ways to protect astronauts' and space tourists' microbiomes during long bouts of space travel, such as during the much-anticipated mission to Mars. These countermeasures could include pre-, pro- and postbiotics.

"We cannot send humans to Mars without knowing how spaceflight affects the body, including the microbes traveling with humans to Mars," said Northwestern's Fred W. Turek, who led the microbiome study. "And we need to know sooner rather than later. The plan is to send people to Mars in 2035, so we cannot wait until 2033 to gain this information."

Northwestern's gut microbiome research was one study out of ten that will publish Friday (April 12) in one comprehensive paper in the journal Science. Each study examines one aspect of how spaceflight affects the human body, including changes in gene expression, bone density, immune system responses and telomere dynamics.

"There were ten teams of researchers but only one article," said Martha Vitaterna, first author of the Northwestern study. "This multi-system, integrated analysis over time is one thing that makes the Twins Study unique and powerful. We can see which things change together in the human body."

Comparing the twins
From 2015 to 2016, Scott Kelly became the first American astronaut to spend nearly one full year in space. Scott Kelly and his identical twin brother, retired astronaut Mark Kelly participated in the unprecedented yearlong investigation, conducted by NASA's Human Research Program. Mark Kelly provided a baseline for observation on Earth, and Scott Kelly provided a comparable test case in space.

Turek and Vitaterna looked at how the composition of bacteria in Scott Kelly's gut changed over time and space. The pair collected two fecal samples from Scott Kelly before he left for space, four during the year in space and three after he returned to Earth.

"We did compare Scott with Mark, which was interesting," said Turek, the Charles and Emma Morrison Professor of Neurobiology in Northwestern's Weinberg College of Arts and Sciences and director of the Center for Sleep and Circadian Biology. "But the real comparison was looking at Scott's samples from before, during and after flight. That's probably the most valuable information we have."

Importance of gut health
Often called a "new organ system," the gut's microbiome is a complex community of microorganisms - including bacteria, viruses and fungi - that live in the digestive tract. Only within the past 10 years have researchers started to realize how the microbiome's health and diversity affects the rest of the human body. Altering the microbiome can lead to alterations in the bone, muscle and brain.

"The influence that bacteria have on all other systems of the body is really remarkable," said Vitaterna, a research professor of neurobiology at Northwestern. "There are studies that link changes in the gut microbiome with neurological and physiological conditions, like Alzheimer's disease, Parkinson's disease, autism and schizophrenia. By protecting the gut, we can protect all these other systems."

More than 90 percent of the gut's bacteria belong to one of two broad categories: Firmicutes or Bacteroidetes. Both categories contain a mix of both good and bad bacteria. The ratio between Firmicutes and Bacteroidetes in Scott Kelly's microbiome experienced a pronounced shift during spaceflight - the number of Firmicutes increased while Bacteroidetes decreased. This shift was among the greater compositional change that the researchers noted in Scott Kelly's microbiome, which returned to normal after he came back to Earth.

"There was some kind of wholesale shift in remodeling of the structure of this community of microorganisms," Vitaterna said. "We cannot say whether it's good or bad."

What caused the shift?
A number of variables could have influenced Scott Kelly's microbiome while in space, including microgravity, increased radiation, shifts in circadian rhythms, decreased sleep time, lack of air circulation, the stress of living in an enclosed space and an altered diet. Turek and Vitaterna were concerned that Scott Kelly's diet in space, which comprised mostly freeze-dried, irradiated, pre-packaged foods, would decrease the diversity in his microbiome. Initially, diet does not appear to matter as much as the researchers worried.

This result mirrored mouse studies the Northwestern pair conducted in the past. Whereas Scott and Mark Kelly did not eat the same foods during the yearlong study, mice in previous studies ate the exact same diet. Still, the space mice experienced shifts in their gut microbiomes compared to the control mice on Earth.

Turek believes microgravity is most likely responsible for the change. "We think that microgravity has an effect on the bacteria," he said. "That's what we want to determine going forward."

University of Illinois at Chicago
NASA Twins Study: A year in space has little effect on gut microbiome
A year in space seems to have a small but significant, transient effect on the gut microbiome, according to a new paper on the NASA Twins Study published in the journal Science.

The microbiome findings, authored by a team of researchers in Chicago, are among the results from 10 other research teams examining how the human body responds to spaceflight that are reported in the paper.

Stefan Green, director of the Sequencing Core at the University of Illinois at Chicago and one of the first authors on the paper, managed the genetic sequencing and analysis of the gut microbes collected from the twins before, during and after one of the twins spent nearly a year on the International Space Station.

While hundreds of humans have flown in space before, there is little data on how space flight longer than a few months impacts health and the body. The goal of the NASA Twins Study is to determine the physiological and psychological health impacts of long-duration spaceflight by comparing the effect of space on one twin to the impact of the Earth environment on a genetically matched sibling.

The twins involved in the study were astronaut Scott Kelly, who flew a year-long mission aboard the International Space Station which ended in March 2016, and his twin brother, Mark Kelly, also an astronaut, who stayed on Earth while his brother was in orbit. The two brothers, who were 50 years old at the time of the study, provided biological samples and underwent a battery of cognitive and physical exams before, during and after Scott's flight.

Teams of researchers from around the nation analyzed the data and report their findings on the biochemical, cognitive, ocular, genetic, physiological, immunological and other changes in the Science paper.

The Chicago-based researchers, led by Fred Turek of Northwestern University and including researchers from Rush University, focused on analyzing changes in the twins' gut microbiomes. Green, together with colleagues George Chlipala and Mark Maienschein-Cline in UIC's Research Informatics Core, sequenced DNA extracted from bacteria, fungi, viruses and other microbes present in fecal swabs collected from the twins before, during and after Scott's year-long mission on the space station.

"Our role in the NASA Twins Study was to sequence as well as analyze the findings from the gastrointestinal microbiomes of the twins, and to place these analyses in context with the results from other teams," Green said.

The gut microbiota helps digest food, fights infections and plays an important role in keeping the immune system healthy. It is greatly influenced by genetics, stress, diet and other environmental factors.

Previous research has implicated an unhealthy or unbalanced microbiota as a contributing factor to metabolic disorders, including obesity and diabetes. The species that make up an individual's gut microbiota, as well as their abundance, can be identified by stool sample or fecal swab analysis.

Fecal swabs were collected from both twins twice before Scott's departure from Earth, four times during Scott's time on the space station and then three times upon his return to Earth.

"There seems to be a small but significant effect on the microbiome caused by spaceflight; however, the makeup of Scott's gut microbiome returned to his baseline pretty quickly upon his return to Earth," Green said.

"Whether the changes are due to the different food, microgravity, or radiation we can't say definitively, but I believe the effect was caused by differences in what he was eating while in flight. An astronaut's diet consists of mainly freeze-dried or thermo-stabilized prepackaged food."

One of the changes Green and his group noticed was a shift during flight in the ratio of two dominant phyla of bacteria: the Firmicutes and Bacteroidetes. Scott's ratio between these two phyla changed while he was in space, with the ratio of these two phyla increasing about five-fold relative to his baseline.

But at no time during the spaceflight were the ratios outside the norms of what you would expect in healthy individuals, Green explained. And, Scott's ratios rapidly returned to where they were before his space mission once he returned to Earth.

Green and colleagues also saw no changes in levels of microbial diversity during Scott's time on the space station.

"Diversity remained constant for Scott during his time in space, and this is, from my perspective, a positive finding suggesting substantial resilience and robustness in the gastrointestinal microbiota," he said.

According to Green, knowing about changes to the microbiome in space is important, in part because if diversity or key species are lost, there are fewer sources to replenish them. He says isolation and confinement are some of the main obstacles related to long-duration missions, and these factors could negatively affect the astronaut gut microbiome.

"The overall small and transient effect of extended spaceflight on the gut microbiome we saw in Scott is very promising and suggests that microbial diversity and function can be maintained on even longer flights," Green said. "This should be taken in context, however, of the fact that this is a study of a single individual in low Earth orbit, and future studies are needed to confirm this finding."

University of California - San Diego
NASA twin study provides multi-omics view of human body's response to year in space
As part of the unprecedented NASA Twin study, researchers at University of California San Diego School of Medicine examined how long-term space flight affects the regulation of proteins and metabolites in the body and the implications for cardiovascular health and vision, both during and after space travel.

The NASA Twins Study is the most comprehensive integrated multi-omics, molecular, physiological, and behavioral analysis of how the human body responds to space flight to date. Study results were published in the April edition of Science.

"This first-of-its-kind investigation has provided clues about how a long duration space flight changes the regulation of molecules in the body and the relationship of these changes with physiological changes in the body due to space flight such as vascular remodeling and vision problems," said senior author Brinda Rana, PhD, professor in the Department of Psychiatry at UC San Diego School of Medicine.

"Not only does the study provide insight into the body's response to space flight, by simultaneously studying the astronaut's identical twin brother who served as our 'ground control,' we captured an integrated view of the molecular, behavioral and physiological changes experienced by a middle-aged man on Earth over a two-year period."

The study consisted of 10 teams of investigators around the nation who have been observing and assessing identical twin astronauts, Scott and Mark Kelly. Scott Kelly flew aboard the International Space Station (ISS) for 342 days in 2015 and 2016 while his identical twin brother, Mark Kelly, remained on Earth.

"A primary issue that astronauts have in space is Space-Associated Neuro-ocular Syndrome or SANS," said Rana. "Many astronauts develop SANS-related vision impairment that may be the result of multiple hits on the vascular system involving microgravity-related fluid shifts, environmental changes, and possibly a genetic pre-disposition."

"Cardiovascular changes akin to atherosclerosis have also been observed in astronauts after a long duration flight. Both SANS and cardiovascular issues are major physiological hurdles which NASA wants to address before they can embark on longer space flight missions, such as the proposed mission to Mars in the 2030s."

Rana's co-investigators at the Johnson Space Center in Houston and Alan Hargens at UC San Diego conducted physiological measures aimed at capturing the development of SANS and cardiovascular changes due to space flight.

In parallel with the physiological studies, Rana's team, consisting of Jamila Siamwala, Hemal Patel, Michael Ziegler, Vivian Hook, Dorothy Sears, Kumar Sharma and Manjula Darshi, conducted metabolomics, proteomics, and mitochondrial function analyses.

Twin Investigators coordinated sample collection and transport from the ISS and also collected samples in Russia when Scott Kelly returned to Earth via the Russian Soyuz spacecraft.

"The challenge was to collect enough biofluids onboard the ISS at multiple time points throughout the year for all 10 investigative teams to conduct this comprehensive omics view of the human body in space," said Rana.

"Blood volume drops in space and the astronauts are chronically dehydrated. These factors add to the difficulty of obtaining samples in space. Our study established protocols for collecting and transporting samples for future multi-omics studies on astronauts."

The physiological and omics data were integrated with that of the other nine investigators to create a comprehensive view of the molecular, physiological and behavioral view of the human body in space. One of the findings from Rana's study was an increase in collagen proteins in urine in space flight, which correlated to physiological measures indicating vascular remodeling during space flight.

Rana is currently complementing her studies in space with two additional NASA-funded ground analog studies of human participants in simulated space environments.

"The overall Twins Study demonstrated the resilience and robustness of how a human body can adapt to a multitude of changes induced by the spaceflight environment, such as microgravity, radiation, circadian disruption, elevated CO2, isolation from friends and family and dietary limitations," said Rana.

"The results will serve as a roadmap for future interdisciplinary studies aimed at better understanding potential health risks of long-duration missions and developing personalized countermeasures."

Research paper


Related Links
Northwestern University
Space Medicine Technology and Systems


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SPACE MEDICINE
Will cyborgs be made from melanin? Pigment breakthrough enables biocompatible electronics
Washington DC (SPX) Mar 27, 2019
The dark brown melanin pigment, eumelanin, colors hair and eyes, and protects our skin from sun damage. It has also long been known to conduct electricity, but too little for any useful application - until now. In a landmark study published in Frontiers in Chemistry, Italian researchers subtly modified the structure of eumelanin by heating it in a vacuum. "Our process produced a billion-fold increase in the electrical conductivity of eumelanin," say study senior authors Dr. Alessandro Pezzel ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE MEDICINE
Music for space

A decade-long quest to build an ecosystem in a room

NASA's OCO-3 Measures How Plants Grow and Glow

Spinoff Book Highlights NASA Technology Everywhere

SPACE MEDICINE
Russia Maintains High Quality of RD-180 Rocket Engines - ULA

Composite Overwrap 3D-Printed Rocket Thruster Endures Extreme Heat

Young entrepreneur aims to send 3D-printed rockets to space

NASA Achieves Rocket Engine Test Milestone Needed for Moon Missions

SPACE MEDICINE
ExoMars carrier module prepares for final pre-launch testing

British instruments help reveal secrets of Mars atmosphere

Martian soil detox could lead to new medicines

NASA's MAVEN Uses Red Planet's Atmosphere to Change Orbit

SPACE MEDICINE
China's commercial carrier rocket finishes engine test

China launches new data relay satellite

Super-powerful Long March 9 said to begin missions around 2030

China preparing for space station missions

SPACE MEDICINE
Preserving heritage data at ESA

Forging the future

Spacecraft Repo Operations

Amazon working on internet-serving satellite network

SPACE MEDICINE
ESA oversees teaching of Europe's next top solderers

It's a one-way street for sound waves in this new technology

Microchip Technology uses Arm-based MCUs for cheap radhard processors

Arralis announces 10W GaN-SiC MMIC high power amplifier for K-Band comms

SPACE MEDICINE
Life Could Be Evolving Right Now on Nearest Exoplanets

Are brown dwarfs failed stars or super-planets?

Samara scientists research how building material for planets appears in the universe

NASA researchers catalogue all microbes and fungi on ISS

SPACE MEDICINE
Public Invited to Help Name Solar System's Largest Unnamed World

Europa Clipper High-Gain Antenna Undergoes Testing

Scientists to Conduct Largest-Ever Hubble Survey of the Kuiper Belt

Jupiter's unknown journey revealed









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.