. 24/7 Space News .
SPACE TRAVEL
NASA's OCO-3 Measures How Plants Grow and Glow
by Carol Rasmussen for GSFC News
Greenbelt MD (SPX) Apr 10, 2019

This honeysuckle is glowing in response to a high-energy ultraviolet light rather than to the Sun, but its shine is similar to the solar-induced fluorescence that OCO-3 will measure.

When plants take in too much energy, they don't get fat - they lighten up. They absorb more sunlight than they need to power photosynthesis, and they get rid of the excess solar energy by emitting it as a very faint glow. The light is far too dim for us to notice under normal circumstances, but it can be measured with a spectrometer. Called solar-induced fluorescence (SIF), it's the most accurate signal of photosynthesis that can be observed from space.

That's important because, as Earth's climate changes, growing seasons worldwide are also changing in both timing and length. These changes may affect world food production and the pace of greenhouse warming. It's not possible to measure photosynthesis globally from ground level, and lab experiments can't easily replicate all of the environmental factors affecting plant growth, such as water availability, wildfires and competition from other plants - factors that also are changing with the climate.

The Orbiting Carbon Observatory 3 (OCO-3), set to launch to the International Space Station later this month, will join its older sibling, OCO-2, in measuring SIF along with its primary target of carbon dioxide concentrations around the globe. The two satellites will be in different orbits: OCO-2 circles Earth from pole to pole, whereas OCO-3 will be mounted on the exterior of the space station, which circles between 52 degrees north and 52 degrees south latitude.

The view from the space station will enable OCO-3 to collect a denser data set than OCO-2 does over the parts of Earth where the most carbon is emitted and stored. The space station orbit will also bring the instrument over any given Earth location at a different time on each orbit, permitting the first dawn-to-dusk observations of how SIF varies over the course of a day.

Nicholas Parazoo of NASA's Jet Propulsion Laboratory in Pasadena, California, is the lead SIF scientist for OCO-3, and he's looking forward to the combined data set to gain insight into remote regions that are relatively little studied. "The two high-carbon, highly uncertain regions on Earth are the Arctic, where there's a lot of carbon in the ground, and the tropics, where there's a lot of carbon in the plants," Parazoo said. "With OCO-2 and OCO-3 combined, we're going to observe those regions in unprecedented detail."

Parazoo and his colleagues will use previously developed algorithms to extract the SIF signal from the full set of data collected by OCO-3. The instrument consists of three spectrometers, each observing different bands of wavelengths in the electromagnetic spectrum. Every kind of gas molecule in the atmosphere - oxygen, carbon dioxide and the others - absorbs sunlight in a unique set of wavelengths. A spectrometer looking at the right wavelengths will see this absorption as a distinctive series of dark lines, like the spectral bar code of a particular gas.

OCO-3's three spectrometers are tuned to two wavelength bands covering different parts of carbon dioxide's bar code and one band with an oxygen bar code. As it happens, the oxygen spectrometer records not only wavelengths absorbed by oxygen, but also nearby wavelengths where SIF shines particularly strongly. "So the SIF measurement wasn't by design but an extremely fortunate bonus," Parazoo said.

Since NASA scientist Joanna Joiner and colleagues produced the first spaceborne SIF measurements in 2010 - before OCO-2 was launched - SIF data has been generated from earlier European and Japanese satellites. However, OCO-2 has a much finer-scale field of view, or footprint, than any preceding satellite, with each image covering an area of about a square mile (less than three square kilometers).

OCO-3 will add to that advantage something OCO-2 cannot do: As OCO-3 orbits, it will turn its sensor quickly to point at instrumented towers on the ground below the spacecraft. These towers measure SIF and photosynthesis concurrently, with similar resolution to OCO-3. Validating the data this way provides critical information on OCO-3's performance and can increase scientific insight into the underlying SIF mechanics.

Data averaged over a large area suggest that there's a straightforward relationship between solar energy coming in and photosynthesis taking place. With OCO-2's fine-scale data, Parazoo said, "We're finding that the relationship between SIF, absorbed solar energy and photosynthesis is more complicated than we thought. We're trying to understand that." He hopes OCO-3 will be able to shed some light on the causes of this complexity.

Cities are another area where the SIF measurement is of interest. They are hotter than surrounding natural regions because of their many heat sources and heat-absorbing surfaces, like pavement. Comparing how the same species of plants grow and thrive in both a city and its natural surroundings gives a sort of sneak preview of how the these plants will respond to a warmer climate.

OCO-2 collects a single, narrow slice of data cutting through a few cities on each orbit, but OCO-3 will target and record SIF at almost every major midlatitude and tropical city. The measurements may prove helpful to urban planners in using their water resources wisely, as well as to biologists in understanding the effects of heat stress on plants.

With so many promising avenues of study arising from SIF, OCO-3's plant light measurements will illuminate new findings for years to come.


Related Links
Orbiting Carbon Observatory 3 (OCO-3)
Space Tourism, Space Transport and Space Exploration News


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SPACE TRAVEL
Grapes on Mars? Georgia winemakers aiming high
Tbilisi (AFP) April 9, 2019
Georgia is immensely proud of its ancient wine-making tradition, claiming to have been the first nation to make wine. Now it wants to be the first to grow grapes on Mars. Nestling between the Great Caucasus Mountains and the Black Sea, Georgia has a mild climate that is perfect for vineyards and has developed a thriving wine tourism industry. Now Nikoloz Doborjginidze has co-founded a project to develop grape varieties that can be grown on Mars. "Georgians were first winemakers on Earth an ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE TRAVEL
A decade-long quest to build an ecosystem in a room

NASA selects two new space tech research institutes for smart habitats

Grapes on Mars? Georgia winemakers aiming high

Progress MS-11 reaches ISS in record time

SPACE TRAVEL
NASA Achieves Rocket Engine Test Milestone Needed for Moon Missions

Northrop Grumman completes 2nd test of rocket motor for ULA Atlas V

US Planning Five Hypersonic Test Programs in Marshall Islands

First 2019 Proton-M Rocket Launch From Baikonur Slated for May

SPACE TRAVEL
Martian soil detox could lead to new medicines

NASA's MAVEN Uses Red Planet's Atmosphere to Change Orbit

Life on Mars?

Curiosity Captured Two Solar Eclipses on Mars

SPACE TRAVEL
China's commercial carrier rocket finishes engine test

China launches new data relay satellite

Super-powerful Long March 9 said to begin missions around 2030

China preparing for space station missions

SPACE TRAVEL
Preserving heritage data at ESA

Amazon working on internet-serving satellite network

ESA and DLR in joint study to support deep space missions

Where space missions are born

SPACE TRAVEL
Russia's new ISS modules will be shielded with fabrics used in body armour

New virtual reality tool allows you to see the world through the eyes of a tiny primate

Debris from anti-satellite test no danger to ISS, India says

About 50 pieces of destroyed Indian satellite flying above ISS

SPACE TRAVEL
Building blocks of DNA and RNA could have appeared together before life began on Earth

Surviving A Hostile Planet

Exoplanet Under the Looking Glass

High School Senior Uncovers Potential for Hundreds of Earth-Like Planets in Kepler Data

SPACE TRAVEL
Europa Clipper High-Gain Antenna Undergoes Testing

Scientists to Conduct Largest-Ever Hubble Survey of the Kuiper Belt

Jupiter's unknown journey revealed

A Prehistoric Mystery in the Kuiper Belt









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.