![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers New Haven CT (SPX) Apr 09, 2019
Imagine being able to hear people whispering in the next room, while the raucous party in your own room is inaudible to the whisperers. Yale researchers have found a way to do just that - make sound flow in one direction - within a fundamental technology found in everything from cell phones to gravitational wave detectors. What's more, the researchers have used the same idea to control the flow of heat in one direction. The discovery offers new possibilities for enhancing electronic devices that use acoustic resonators. The findings, from the lab of Yale's Jack Harris, are published in the April 4 online edition of the journal Nature. "This is an experiment in which we make a one-way route for sound waves," said Harris, a Yale physics professor and the study's principal investigator. "Specifically, we have two acoustic resonators. Sound stored in the first resonator can leak into the second, but not vice versa." Harris said his team was able to achieve the result with a "tuning knob" - a laser setting, actually - that can weaken or strengthen a sound wave, depending on the sound wave's direction. Then the researchers took their experiment to a different level. Because heat consists mostly of vibrations, they applied the same ideas to the flow of heat from one object to another. "By using our one-way sound trick, we can make heat flow from point A to point B, or from B to A, regardless of which one is colder or hotter," Harris said. "This would be like dropping an ice cube into a glass of hot water and having the ice cubes get colder and colder while the water around them gets warmer and warmer. Then, by changing a single setting on our laser, heat is made to flow the usual way, and the ice cubes gradually warm and melt while the liquid water cools a bit. Though in our experiments it's not ice cubes and water that are exchanging heat, but rather two acoustic resonators." Although some of the most basic examples of acoustic resonators are found in musical instruments or even automobile exhaust pipes, they're also found in a variety of electronics. They are used as sensors, filters, and transducers because of their compatibility with a wide range of materials, frequencies, and fabrication processes.
![]() ![]() High-tech material in a salt crust Juelich, Germany (SPX) Apr 08, 2019 MAX phases are viewed as promising materials for the future, for example for turbines in power plants and aircraft, space applications, or medical implants. A new method developed by scientists from Forschungszentrum Julich now makes it possible to produce this desirable material class on an industrial scale for the first time: a crust of salt protects the raw material from oxidation at a production temperature of more than 1,000 degrees Celsius - and can then simply be washed off with water. The ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |