. 24/7 Space News .
TECH SPACE
Microchip Technology uses Arm-based MCUs for cheap radhard processors
by Staff Writers
Chandler AZ (SPX) Apr 08, 2019

.

From NewSpace to critical space missions, designers of space applications need to reduce design cycles and costs while scaling development across missions with different radiation requirements.

To support this trend, Microchip Technology Inc. has introduced the space industry's first Arm-based microcontrollers (MCUs) that combine the low-cost and large ecosystem benefits of Commercial Off-the-Shelf (COTS) technology with space-qualified versions that have scalable levels of radiation performance.

Based on the automotive-qualified SAMV71, the SAMV71Q21RT radiation-tolerant and SAMRH71 radiation-hardened MCUs implement the widely deployed Arm Cortex-M7 System on Chip (SoC), enabling more integration, cost reduction and higher performance in space systems.

The SAMV71Q21RT and SAMRH71 allow software developers to begin implementation with the SAMV71 COTS device before moving to a space-grade component, significantly reducing development time and cost.

Both devices can use the SAMV71's full software development toolchain, as they share the same ecosystem including software libraries, Board Support Package (BSP) and Operating System (OS) first level of porting.

Once preliminary developments are complete on the COTS device, all software development can be easily swapped out to a radiation-tolerant or radiation hardened version in a high-reliability plastic package or space-grade ceramic package. The SAMV71Q21RT radiation-tolerant MCU reuses the full COTS mask set and offers pinout compatibility, making the transition from COTS to qualified space parts immediate.

While the SAMV71Q21RT's radiation performance is ideal for NewSpace applications such as Low Earth Orbit (LEO) satellite constellations and robotics, the SAMRH71 offers the radiation performance suited for more critical sub-systems like gyroscopes and star tracker equipment.

The SAMV71Q21RT rad-tolerant device ensures an accumulated TID of 30Krad (Si) with latch up immunity and is nondestructive against heavy ions. Both devices are fully immune to Single-Event Latchup (SEL) up to 62 MeV.cm/mg.

The SAMRH71 radiation-hardened MCU is designed specifically for deep space applications with the following targeted radiation performances:

- Accumulated TID of more than 100 Krad (Si)

- No Single Event Upset (SEU) Linear Energy Transfer (LET) up to 20 MeV.cm/mg, without system mitigation

- Designed for No Single-Event Functional Interrupts (SEFI), which secures all memories' integrity

Based on the Arm Cortex-M7 core, the SAMV71Q21RT and SAMRH71 feature high-performance and low-power operation to provide long operating life for aerospace applications. To protect against the effects of radiation and manage system mitigation, the architecture of the devices includes fault management and data integrity features such as Error-correcting Code (ECC) memory, Integrity Check Monitor (ICM) and Memory Protection Unit (MPU).

The SAMV71Q21RT and SAMRH71 also feature CAN FD and Ethernet AVB/TSN capabilities to follow the evolution of space systems' connectivity requirements. To further support deep space applications, the SAMRH71 has dedicated SpaceWire and MIL-STD-1553 interfaces for control and high-speed data management up to 200Mbit/s.

"As the industry's first radiation-tolerant and radiation-hardened Arm Cortex-M7 MCUs, the SAMV71Q21RT and SAMRH71 bring a proven SoC architecture from the automotive market to aerospace applications," said Bob Vampola, vice president of Microchip's aerospace and defense business unit. "Leveraging Microchip's COTS-to-radiation-tolerant and radiation-hardened approach, the devices allow designers to begin prototyping immediately at a relatively limited cost before moving forward with qualified parts."

Development Tools
To ease the design process and accelerate time to market, developers can use the ATSAMV71-XULT evaluation board. The devices are supported by Atmel Studio Integrated Development Environment (IDE) for developing, debugging and software libraries. Both devices will also be supported in MPLAB Harmony version 3.0 by mid-2019.

High-res images available through Flickr or editorial contact (feel free to publish): Application image: https://www.flickr.com/photos/microchiptechnology/46749696124 SAMV71Q21RT chip shot: https://www.flickr.com/photos/microchiptechnology/46749696434/in/photostream/ SAMRH71 chip shot: https://www.flickr.com/photos/microchiptechnology/46749696894
Related Links
Microchip Technology
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Radioactive material detected remotely using laser-induced electron avalanche breakdown
Newark MD (SPX) Mar 24, 2019
Physicists at the University of Maryland have developed a powerful new method to detect radioactive material. By using an infrared laser beam to induce a phenomenon known as an electron avalanche breakdown near the material, the new technique is able to detect shielded material from a distance. The method improves upon current technologies that require close proximity to the radioactive material. With additional engineering advancements, the method could be scaled up and used to scan trucks and sh ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
A decade-long quest to build an ecosystem in a room

NASA selects two new space tech research institutes for smart habitats

Grapes on Mars? Georgia winemakers aiming high

Progress MS-11 reaches ISS in record time

TECH SPACE
NASA Achieves Rocket Engine Test Milestone Needed for Moon Missions

Northrop Grumman completes 2nd test of rocket motor for ULA Atlas V

US Planning Five Hypersonic Test Programs in Marshall Islands

First 2019 Proton-M Rocket Launch From Baikonur Slated for May

TECH SPACE
Martian soil detox could lead to new medicines

NASA's MAVEN Uses Red Planet's Atmosphere to Change Orbit

Life on Mars?

Curiosity Captured Two Solar Eclipses on Mars

TECH SPACE
China's commercial carrier rocket finishes engine test

China launches new data relay satellite

Super-powerful Long March 9 said to begin missions around 2030

China preparing for space station missions

TECH SPACE
Preserving heritage data at ESA

Amazon working on internet-serving satellite network

ESA and DLR in joint study to support deep space missions

Where space missions are born

TECH SPACE
Russia's new ISS modules will be shielded with fabrics used in body armour

New virtual reality tool allows you to see the world through the eyes of a tiny primate

Debris from anti-satellite test no danger to ISS, India says

About 50 pieces of destroyed Indian satellite flying above ISS

TECH SPACE
Building blocks of DNA and RNA could have appeared together before life began on Earth

Surviving A Hostile Planet

Exoplanet Under the Looking Glass

High School Senior Uncovers Potential for Hundreds of Earth-Like Planets in Kepler Data

TECH SPACE
Europa Clipper High-Gain Antenna Undergoes Testing

Scientists to Conduct Largest-Ever Hubble Survey of the Kuiper Belt

Jupiter's unknown journey revealed

A Prehistoric Mystery in the Kuiper Belt









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.