. 24/7 Space News .
EXO WORLDS
NASA researchers catalogue all microbes and fungi on ISS
by Staff Writers
Washington DC (SPX) Apr 09, 2019

Illustration of the eight locations sampled on the ISS over three flight sampling sessions. Location #1, port panel next to cupola (Node 3); location #2, waste and hygiene compartment (node 3); location #3, advanced resistive exercise device (ARED) foot platform (node 3); location #4, dining table (node 1); location #5, zero G stowage rack (node 1); location #6, permanent multipurpose module (PMM) port 1 (PMM); location #7, panel near portable water dispenser (LAB); and location #8, port crew quarters, bump out exterior aft wall (node 2)

A comprehensive catalogue of the bacteria and fungi found on surfaces inside the International Space Station (ISS) is being presented in a study published in the open access journal Microbiome. Knowledge of the composition of the microbial and fungal communities on the ISS can be used to develop safety measures for NASA for long-term space travel or living in space.

Dr Kasthuri Venkateswaran, at the NASA Jet Propulsion Laboratory (JPL), the corresponding author said: "Specific microbes in indoor spaces on Earth have been shown to impact human health. This is even more important for astronauts during spaceflight, as they have altered immunity and do not have access to the sophisticated medical interventions available on Earth.

"In light of possible future long-duration missions, it is important to identify the types of microorganisms that can accumulate in the unique, closed environments associated with spaceflight, how long they survive and their impact on human health and spacecraft infrastructure."

The researchers found that microbes on the ISS were mostly human-associated. The most prominent bacteria were Staphylococcus (26% of total isolates), Pantoea (23%) and Bacillus (11%).

They included organisms that are considered opportunistic pathogens on Earth, such as Staphylococcus aureus (10% of total isolates identified), which is commonly found on the skin and in the nasal passage, and Enterobacter, which is associated with the human gastrointestinal tract. On Earth, they are predominant in gyms, offices, and hospitals, which suggests that the ISS is similar to other built environments where the microbiome is shaped by human occupation.

Dr Checinska Sielaff, first author said: "Whether these opportunistic bacteria could cause disease in astronauts on the ISS is unknown. This would depend on a number of factors, including the health status of each individual and how these organisms function while in the space environment. Regardless, the detection of possible disease-causing organisms highlights the importance of further studies to examine how these ISS microbes function in space."

Dr Urbaniak, joint first author added: "Some of the microorganisms we identified on the ISS have also been implicated in microbial induced corrosion on Earth. However, the role they play in corrosion aboard the ISS remains to be determined. In addition to understanding the possible impact of microbial and fungal organisms on astronaut health, understanding their potential impact on spacecraft will be important to maintain structural stability of the crew vehicle during long term space missions when routine indoor maintenance cannot be as easily performed."

The researchers used traditional culture techniques and gene sequencing methods to analyse surface samples collected in eight locations on the ISS, including the viewing window, toilet, exercise platform, dining table and sleeping quarters, during three flights across 14 months. This allowed them to examine if and how the microbial and fungal populations differed between locations and over time.

The authors found that while fungal communities were stable, microbial communities were similar across locations but changed over time. Samples taken during the second flight mission had higher microbial diversity than samples collected during the first and third missions. The authors suggest that these temporal differences may be due to the different astronauts on board the ISS.

Dr Venkateswaran said: "Our study provides the first comprehensive catalogue of the bacteria and fungi found on surfaces in closed space systems and can be used to help improve safety measures that meet NASA requirements for deep space human habitation. The results can also have significant impact on our understanding of other confined built environments on the Earth such as clean rooms used in the pharmaceutical and medical industries."

Research Report: "Characterization of the total and viable bacterial and fungal communities associated with the International Space Station surfaces"


Related Links
BioMed Central
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
Building blocks of DNA and RNA could have appeared together before life began on Earth
La Jolla CA (SPX) Apr 03, 2019
Scientists for the first time have found strong evidence that RNA and DNA could have arisen from the same set of precursor molecules even before life evolved on Earth about four billion years ago. The discovery, published April 1 in Nature Chemistry, suggests that the first living things on Earth may have used both RNA and DNA, as all cell-based life forms do now. In contrast, the prevailing scientific view - the "RNA World" hypothesis - is that early life forms were based purely on RNA, and only ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
A decade-long quest to build an ecosystem in a room

NASA selects two new space tech research institutes for smart habitats

Grapes on Mars? Georgia winemakers aiming high

Progress MS-11 reaches ISS in record time

EXO WORLDS
NASA Achieves Rocket Engine Test Milestone Needed for Moon Missions

Northrop Grumman completes 2nd test of rocket motor for ULA Atlas V

US Planning Five Hypersonic Test Programs in Marshall Islands

First 2019 Proton-M Rocket Launch From Baikonur Slated for May

EXO WORLDS
Martian soil detox could lead to new medicines

NASA's MAVEN Uses Red Planet's Atmosphere to Change Orbit

Life on Mars?

Curiosity Captured Two Solar Eclipses on Mars

EXO WORLDS
China's commercial carrier rocket finishes engine test

China launches new data relay satellite

Super-powerful Long March 9 said to begin missions around 2030

China preparing for space station missions

EXO WORLDS
Preserving heritage data at ESA

Amazon working on internet-serving satellite network

ESA and DLR in joint study to support deep space missions

Where space missions are born

EXO WORLDS
Russia's new ISS modules will be shielded with fabrics used in body armour

New virtual reality tool allows you to see the world through the eyes of a tiny primate

Debris from anti-satellite test no danger to ISS, India says

About 50 pieces of destroyed Indian satellite flying above ISS

EXO WORLDS
Building blocks of DNA and RNA could have appeared together before life began on Earth

Surviving A Hostile Planet

Exoplanet Under the Looking Glass

High School Senior Uncovers Potential for Hundreds of Earth-Like Planets in Kepler Data

EXO WORLDS
Europa Clipper High-Gain Antenna Undergoes Testing

Scientists to Conduct Largest-Ever Hubble Survey of the Kuiper Belt

Jupiter's unknown journey revealed

A Prehistoric Mystery in the Kuiper Belt









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.