. 24/7 Space News .
ESA oversees teaching of Europe's next top solderers
by Staff Writers
Paris (ESA) Apr 08, 2019

Hall Effect current sensor signal processing PCB

Satellites are among the most complex machines ever designed, but in key respects they are still hand-made. A set of ESA-approved training schools train and certify the best solderers in Europe, to ensure they have sufficient ability to work on electronic hardware for space missions.

More than a thousand operators and inspectors take the courses annually. The resulting highly-skilled personnel are often in high demand from terrestrial industry too - including in the past companies such as Ferrari and the McLaren Formula 1 team. Schools have also been run for customers beyond Europe, from Argentina to Malaysia, as well as the United States.

"Recognition of ESA accreditation overseas and beyond the boundaries of the space sector is a mark of the training quality being provided," comments Mikko Nikulainen, heading ESA's Components and Materials' Physics and Chemistry Evaluation and Standardisation Division.

Soldering is an essential skill to assemble devices onto printed circuit boards (PCBs). A single satellite might carry high numbers of these PCBs, and all of them have to go on functioning as planned throughout many years in space.

Just as with everyday electronic devices, PCBs are the source of their host machine's capabilities and intelligence - with the crucial difference that for satellite electronics, failure is not an option.

"If your mobile phone fails, you change it," explains ESA materials and processes engineer Carole Villette. "If a satellite stops working in space, representing a massive investment with no chance of repair, then the cost is much, much higher."

There are seven ESA-certified soldering schools across our continent, operated on a commercial basis to serve regional industry, based in Italy, France, Germany, Denmark, Switzerland and the UK (with an additional soldering school in Poland being certified). Solder operators are trained together with inspectors and also instructors, being certified to train other people in turn.

Soldering for space has some important differences from its everyday equivalent, explains soldering instructor Brett Smith of ASTA Technology, part of Portsmouth University in the UK: "It takes place inside an environmentally controlled cleanroom - the particle count permitted within it depends on the sensitivity of the products being assembled.

"You wear an electrostatic discharge bracelet and other 'ESD' safe clothing, gloves, hair nets and in some cases beard guards - preventing static and debris from your own body doing damage or contaminating the equipment.

"And you're looking through a microscope of between four to 40 times magnification depending on the application. The soldering precision required is to an extremely high level."

Work benches are kept as clear as possible, to minimise the risk of anything damaging the PCBs or assemblies. Paper instructions are not to be used around flight hardware, as microscopic fibres might contaminate the delicate assemblies.

During their courses, pupils undergo exams, soldering test boards or assemblies which are then self-inspected and verified by the instructor. Solderers, inspectors and trainers receive certifications that have to be renewed every two years, while receiving regular training from their own companies in the meantime.

The syllabus is based on the European Coordination for Space Standardization - the definitive set of standards defining how to manage, design, manufacture and verify a European space mission.

"Getting an understanding of how the terrestrial environment, launch factors and the space environment affect every aspect of flight hardware and how it has to function is an important aspect of the course," adds Brett.

"Solderers and inspectors need that knowledge to be able to understand why the standards are as they are, then use this knowledge to implement the requirements of these standards into their work. This requires both a high level of practical skills as well as a deep knowledge of the ECSS standards to produce reliable products built in the correct environment that will fulfill the required tasks for the full lifetime of the mission.

"It's a different scenario from mass-produced terrestrial PCBs, where a badly soldered board or an assembly that does not function as it should can just be thrown away. A single custom-made PCB might be worth tens of thousands of Euros and maybe have taken a year to make, so the onus is on operators and inspectors to modify the assembly - bearing in mind at the same time that too much reworking can also reduce an assembly's lifetime reliability."

Thomas Rohr, heading ESA's Materials and Processes section, comments: "Why does the space sector need such rigorous standards, more exacting even than terrestrial aviation? The answer is that the space environment is far more challenging than anything else.

"There is the violent vibration of launch, mechanical shock of launcher separation followed by the weightlessness, vacuum and temperature extremes of Earth orbit - space is a place where it is possible to be hot and cold at the same time. Plus there is the dimension of time: our missions must go on operating reliably for years on end. We have to engineer accordingly."

Automated soldering has become the norm in many parts of the electronics industry. ESA too favours machine-based soldering if its quality is high enough, because of its inherent repeatability.

But in many cases the production runs are too low to make automated soldering practical, or human soldering is still required to tweak the precision or perform fixes - the human hand and eye are still superior to machinery.

Related Links
European Coordination for Space Standardization
Space Technology News - Applications and Research

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

Arralis announces 10W GaN-SiC MMIC high power amplifier for K-Band comms
Limerick, Ireland (SPX) Apr 08, 2019
Irish company Arralis, global leaders in building technology and products that are the future of global radar and wireless communications, has announced the launch of its new Leonis series GaN-SiC High Power Amplifier (HPA) optimised for satellite downlink communication systems. The HPA operates in K-band from 17.5GHz-20GHz and delivers a saturated power in excess of 10W with typical power added efficiency of 25% and large signal gain of 20dB in a compact die size of 3.6x2.9mm. The part is matched ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Music for space

NASA astronaut to set record for longest spaceflight by a woman

Asteroids help scientists measure distant stars

Asteroids Help Scientists Measure Diameters of Faraway Stars

Sea Launch venture may be moved from US to Russia's Far East

SpaceX loses Falcon Heavy rocket center core booster in Atlantic

Arianespace completes deployment of O3b constellation

Europe's institutions consider Ariane 6 and Vega-C

A small step for China: Mars base for teens opens in desert

ExoMars carrier module prepares for final pre-launch testing

First results from the ExoMars Trace Gas Orbiter

Curiosity Tastes First Sample in 'Clay-Bearing Unit'

China's commercial carrier rocket finishes engine test

China launches new data relay satellite

Super-powerful Long March 9 said to begin missions around 2030

China preparing for space station missions

Canadian Space Agency Sees Science Cooperation With Russia as Area of Growth

Forging the future

Preserving heritage data at ESA

Spacecraft Repo Operations

Wonder materials: 2D phosphorene nanoribbons and 2D borophene get a closer look

Industrial 3D printing goes skateboarding

China to complete $545 mn modernisation for Tajik smelter

India's ASAT 'Justified'

Astronomers discover third planet in the Kepler-47 circumbinary system

Powerful particles and tugging tides may affect extraterrestrial life

Global Challenge Launched to Build Exoplanet Data Solutions

TESS finds its first Earth-sized planet

Public Invited to Help Name Solar System's Largest Unnamed World

Europa Clipper High-Gain Antenna Undergoes Testing

Scientists to Conduct Largest-Ever Hubble Survey of the Kuiper Belt

Jupiter's unknown journey revealed

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.