. 24/7 Space News .
TECH SPACE
Researchers recreate deep-Earth conditions to see how iron copes with extreme stress
by Graycen Wheeler for SLAC News
Menlo Park CA (SPX) Nov 16, 2021

Researchers recreate deep-Earth conditions to see how iron copes with extreme stress.

Far below you lies a sphere of solid iron and nickel about as wide as the broadest part of Texas: the Earth's inner core. The metal at the inner core is under pressure about 360 million times higher than we experience in our everyday lives and temperatures approximately as hot as the Sun's surface.

Earth's planetary core is thankfully intact. But in space, similar cores can collide with other objects, causing the crystalline materials of the core to deform rapidly. Some asteroids in our solar system are massive iron objects that scientists suspect are the remnants of planetary cores after catastrophic impacts.

Measuring what happens during the collision of celestial bodies or at the Earth's core is obviously not very practical. As such, much of our understanding of planetary cores is based on experimental studies of metals at less extreme temperatures and pressures. But researchers at the Department of Energy's SLAC National Accelerator Laboratory have now observed for the first time how iron's atomic structure deforms to accommodate the stress from the pressures and temperatures that occur just outside of the inner core.

Coping with stress
Most of the iron you encounter in your everyday life has its atoms arranged in nanoscopic cubes, with an iron atom at each corner and one in the center. If you squeeze these cubes by applying extremely high pressures, they rearrange into hexagonal prisms, which allow the atoms to pack in more tightly.

The group at SLAC wanted to see what would happen if you kept applying pressure to that hexagonal arrangement to mimic what happens to iron at the Earth's core or during atmospheric reentry from space. "We didn't quite make inner core conditions," says co-author Arianna Gleason, a scientist in the High-Energy Density Science (HEDS) Division at SLAC. "But we achieved the conditions of the outer core of the planet, which is really remarkable."

No one had ever directly observed iron's response to stress under such high temperatures and pressures before, so the researchers didn't know how it would respond. "As we continue to push it, the iron doesn't know what to do with this extra stress," says Gleason. "And it needs to relieve that stress, so it tries to find the most efficient mechanism to do that."

The coping mechanism iron uses to deal with that extra stress is called "twinning." The arrangement of atoms shunts to the side, rotating all the hexagonal prisms by nearly 90 degrees. Twinning is a common pressure response in metals and minerals - quartz, calcite, titanium and zirconium all undergo twinning.

"Twinning allows iron to be incredibly strong - stronger than we first thought - before it starts to flow plastically on much longer time scales," Gleason said.

A tale of two lasers
Reaching these extreme conditions required two types of lasers. The first was an optical laser, which generated a shock wave that subjected the iron sample to extremely high temperatures and pressures. The second was SLAC's Linac Coherent Light Source (LCLS) X-ray free-electron laser, which allowed the researchers to observe the iron on an atomic level. "At the time, LCLS was the only facility in the world where you could do that," says lead author Sebastien Merkel of the University of Lille in France. "It's been a door opener for other similar facilities in the world."

The team fired both lasers at a tiny sample of iron about the width of a human hair, hitting the iron with a shock wave of heat and pressure. "The control room is just above the experimental room," Merkel says. "When you trigger the discharge, you hear a loud pop."

As the shock wave hit the iron, researchers used the X-ray laser to observe how the shock changed the arrangement of the iron atoms. "We were able to make a measurement in a billionth of a second," Gleason says. "Freezing the atoms where they are in that nanosecond is really exciting."

The researchers collected these images and assembled them into a flipbook that showed iron deforming. Before the experiment was complete, they didn't know if iron would respond too fast for them to measure or too slow for them to ever see. "The fact that the twinning happens on the time scale that we can measure it as an important result in itself," Merkel says.

The future is bright
This experiment serves as a bookend for understanding the behavior of iron. Scientists had gathered experimental data on the structure of iron at lower temperatures and pressures and used it to model how iron would behave at extremely high temperatures and pressures, but no one had ever experimentally tested those models.

"Now we can give a thumbs up, thumbs down on some of the physics models for really fundamental deformation mechanisms," Gleason says. "That helps to build up some of the predictive capability we're lacking for modeling how materials respond at extreme conditions."

The study provides exciting insights into the structural properties of iron at extremely high temperatures and pressures. But the results are also a promising indicator that these methods could help scientists understand how other materials behave at extreme conditions, too.

"The future is bright now that we've developed a way to make these measurements," Gleason says. "The recent X-ray undulator upgrade as part of the LCLS-II project allows higher X-ray energies - enabling studies on thicker alloys and materials that have lower symmetry and more complex X-ray fingerprints."

The upgrade will also enable researchers to observe larger samples, which will give them a more comprehensive view of iron's atomic behavior and improve their statistics. Plus, "we're going to get more powerful optical lasers with the approval to proceed with a new flagship petawatt laser facility, known as MEC-U," says Gleason. "That'll make future work even more exciting because we'll be able to get to the Earth's inner core conditions without any problem."

Research Report: "Femtosecond Visualization of hcp-Iron Strength and Plasticity under Shock Compression"


Related Links
SLAC National Accelerator Laboratory
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Extracting high-quality magnesium sulphate from seawater desalination brine
Busan, South Korea (SPX) Nov 12, 2021
Given that mining to extract high-grade mineral ores is wastefully energy intensive, exhaustible, and bad for the environment, scientists have been scouting for alternatives. A group of Korean researchers, led by Professor Myoung-Jin Kim, from Korea Maritime and Ocean University, have now succeeded in extracting high-quality minerals from just seawater. Specifically, they have achieved the extraction of 99.8% pure magnesium sulphate (MgSO4), from seawater desalination brine (SDB). Speaking about t ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
NASA receives 11th consecutive clean financial audit opinion

Matthias Maurer arrives at the International Space Station

SpaceX capsule with crew of four docks with ISS

Orbital Assembly Corporation promote space hotels in LEO for investment

TECH SPACE
PLD Space exhibits the first privately-developed Spanish rocket

SpinLaunch conducts first successful test of giant 'suborbital accelerator' satellite sling

SpaceX deploys 53 Starlink internet satellites from Falcon 9 rocket

Virgin Orbit's begins pre-flight prep before its end of year flight

TECH SPACE
Curiosity helping make Mars safer for astronauts

Still lots to do at the Zechstein drill locale

Mars - or Arrakis

Curiosity powers on with extra energy for Martian science

TECH SPACE
Chinese astronauts' EVAs to help extend mechanical arm

Astronaut becomes first Chinese woman to spacewalk

Shenzhou XIII crew ready for first spacewalk

Chinese astronauts arrive at space station for longest mission

TECH SPACE
Groundbreaking Iridium Certus 100 Service Launches with Partner Products for Land, Sea, Air and Industrial IoT

European software-defined satellite starts service

iRocket And Turion Space ink agreement for 10 launches to low earth orbit

OneWeb and Leonardo DRS announce partnership to offer low earth orbit services for Pentagon

TECH SPACE
Research in Brief: First-ever interior Earth mineral discovered in nature

Researchers recreate deep-Earth conditions to see how iron copes with extreme stress

Bacteria may be key to sustainably extracting earth elements for tech

Chile: Copper, quakes and inequality

TECH SPACE
Discovering exoplanets using artificial intelligence

New model will help find Earth-like Exoplanets

Simulations provide clue to missing planets mystery

Circumbinary planet discovered by TESS validates new detection technique

TECH SPACE
Science results offer first 3D view of Jupiter's atmosphere

Juno peers deep into Jupiter's colorful belts and zones

Scientists find strange black 'superionic ice' that could exist inside other planets

Jupiter's Great Red Spot is deeper than thought, shaped like lens









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.