. | . |
Discovering exoplanets using artificial intelligence by Staff Writers Geneva, Switzerland (SPX) Nov 12, 2021
The majority of exoplanets discovered to date have been discovered using the transit method. This technique is based on a mini eclipse caused when a planet passes in front of its star. The decrease in luminosity observed makes it possible to deduce the existence of a planet and to estimate its diameter, after the observations have been periodically confirmed. However, theory predicts that in many planetary systems, interactions between planets alter this periodicity and make their detection impossible. It is in this context that a team of astronomers from the University of Geneva (UNIGE), the University of Bern (UniBE), and the NCCR PlanetS, Switzerland, in collaboration with the company Disaitek, used artificial intelligence (AI) applied to image recognition. They taught a machine to predict the effect of interactions between planets, making it possible to discover exoplanets that were impossible to detect until now. The tools developed, published in the journal Astronomy and Astrophysics, could be used on Earth to detect illegal dumps and waste dumps. Detecting a planet by the transit method is a long process. Finding the signal induced by small planets in the data can be complex, if not impossible with the usual techniques, in the case where interactions between planets alter the periodicity of the transit phenomenon. To counter this difficulty, it is necessary to develop tools that can take this effect into account. "This is why we thought of using artificial intelligence applied to image recognition", explains Adrien Leleu, a researcher in the Department of Astronomy at the UNIGE Faculty of Science and the NCCR PlanetS. It is indeed possible to teach a machine, using a large number of examples, to take into account all the parameters and predict the effect of interactions between planets in a pictorial representation of the induced effect. To do this, the astronomers have joined forces with the company Disaitek through the NCCR's Technology and Innovation Platform.
An artificial neural network capable of identifying objects In the context of exoplanet detection, the aim is to determine, for each measurement of the star's luminosity, whether the eclipse of a planet is observed. The neural network makes its decision by cross-referencing all available observations of that star with the range of configurations seen during its training. "From the first implementations of the method, we discovered two exoplanets - Kepler-1705b and Kepler-1705c - that had been completely missed by previous techniques", reveals Adrien Leleu. The planetary systems thus discovered are a gold mine for our knowledge of exoplanets, and more particularly of terrestrial-type planets, which are generally difficult to characterise. The method developed not only makes it possible to estimate the radius of planets, but also provides information on their mass, and therefore on their density and composition. "The use of AI, in particular of 'deep learning' as in this paper, is becoming increasingly widespread in astrophysics, whether to process observational data, as we did here, or to analyze the results of gigantic numerical simulations producing terabytes of data. What we have developed in this study is a new example of the fantastic contribution that these techniques can make to our field, and probably to all fields of research", notes Yann Alibert, Professor at the University of Bern, and Scientific Officer of the NCCR PlanetS.
Technology for Earth observation
Research Report: "Alleviating the transit timing variation bias in transit surveys. I. RIVERS: Method and detection of a pair of resonant super-Earths around Kepler-1705"
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |