. 24/7 Space News .
EXO WORLDS
Meteor magnets in outer space
by Staff Writers
Riverside CA (SPX) May 27, 2019

The 'wobble,' or radial velocity technique for finding planets relies on the movement of the stars created as they're circled by their planets. The blue wave represents movement toward Earth, while the red wavelength occurs as the star heads away.

Astronomers believe planets like Jupiter shield us from space objects that would otherwise slam into Earth. Now they're closer to learning whether giant planets act as guardians of solar systems elsewhere in the galaxy.

A UCR-led team has discovered two Jupiter-sized planets about 150 light years away from Earth that could reveal whether life is likely on the smaller planets in other solar systems.

"We believe planets like Jupiter have profoundly impacted the progression of life on Earth. Without them, humans might not be here to have this conversation," said Stephen Kane, lead study author and UCR associate professor of planetary astrophysics. "Understanding how many other stars have planets like Jupiter could be very important for learning about the habitability of planets in those systems."

Along with liquid water oceans, Kane said astronomers believe such planets have the ability to act as 'slingshots,' pulling objects like meteors, comets, and asteroids out of their trajectories en route to impact with small, rocky planets.

Many larger planets have been found close to their stars. However, those aren't as useful for learning about the architecture of our own solar system, where the giant planets including Saturn, Uranus and Neptune are all farther from the sun. Big planets far from their stars have, until now, been harder to find.

A study recently accepted for publication in the Astronomical Journal details how Kane's team found success in a novel approach combining traditional detection methods with the latest technologies.

One popular method of searching for exoplanets - planets in other solar systems - involves monitoring stars for "wobble," in which a star moves toward and away from Earth. The wobble is likely caused by the gravitational pull a nearby planet is exerting on it. When a star wobbles, it's a clue there may be an exoplanet nearby.

When the planet is far from its star, the gravitational pull is weaker, making the wobble smaller and harder to detect. The other problem with using the wobble detection method, Kane said, is that it just takes a long time. Earth only takes a year to orbit the sun. Jupiter takes 12, Saturn takes 30, and Neptune takes an astonishing 164 years.

The larger exoplanets also take many years to circle their stars, which means observing a complete orbit could engulf an astronomer's entire career. To accelerate the process, Kane and his team combined the wobble method with direct imaging. This way, if the team thought a planet might be causing wobble, they could confirm it by sight.

Obtaining a direct image of a planet quadrillions of miles away is no simple task. It requires the largest possible telescope, one that is at least 32 feet long and highly sensitive. Even from this distance, the light of the stars can overexpose the image, obscuring the target planets.

The team overcame this challenge by learning to recognize and eliminate the patterns in their images created by starlight. Removing the starlight allowed Kane's team to see what remained.

"Direct imaging has come a long way both in terms of understanding the patterns we find, and in terms of the instruments used to create the images, which are much higher resolution than they've ever been," Kane said. "You see this every time a new smartphone is released - the camera detectors are always being improved and that's true in astronomy as well."

In this project, the team applied the combination of wobble and imaging method to 20 stars. In addition to the two being orbited by giant Jupiter-like planets that had not been previously discovered, the team also detected a third, previously observed star with a giant planet in its system.

Going forward, the team will continue to monitor 10 of the stars where planetary companions could not be ruled out. In addition, Kane is planning a new project to measure how long it takes these exoplanets to complete rotations toward and away from their stars, which cannot currently be measured.

Kane's team is international, with members at the Australian Astronomical Observatory, University of Southern Queensland, University of New South Wales and Macquarie University in Australia, as well as at the University of Hertfordshire in the United Kingdom. They are also spread across the U.S. at the National Optical Astronomy Observatory in Tucson, AZ, Southern Connecticut State University, NASA Ames Research Center and Stanford University in California and the Carnegie Institution of Washington in D.C.

"This discovery is an important piece of the puzzle because it helps us understand the factors that make a planet habitable and whether that's common or not," said Kane. "We are converging rapidly on answers to this question that the past 3,000 recorded years of history could only wish they had available to them."


Related Links
University of California - Riverside
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
New insights about carbon and ice could clarify inner workings of Earth, other planets
Los Angeles CA (SPX) May 23, 2019
Most people behave differently when under extreme pressure. Carbon and ice are no different. Two new studies show how these key planetary ingredients take on exotic forms that could help researchers better understand the composition of Earth's core as well as the cores of planets across the galaxy. Craig Manning, a UCLA professor of geology and geochemistry, is a co-senior author of one of the papers, which was published in the journal Nature, and senior author of the other, which was published in ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Wandering Earth: rocket scientist explains how we could move our planet

China's tech 'Long March' could be road to nowhere

NASA Prepares for Future Moon Exploration with International Undersea Crew

NASA Selects Studies for Future Space Communications and Services

EXO WORLDS
ULA Completes Final Design Review for New Vulcan Centaur Rocket

From airport to spaceport as UK targets horizontal spaceflight

Michigan Company Helps Build NASA Moon Rocket, Accelerate Moon Missions

USC Students Win the Collegiate Space Race

EXO WORLDS
NASA Closer to Discovering What Lies Beneath the Surface of Airless Planetary Bodies

NASA's Mars 2020 Mission Drops in on Death Valley

Strange Martian mineral deposit likely sourced from volcanic explosions

Massive Martian ice discovery opens a window into red planet's history

EXO WORLDS
China develops new-generation rockets for upcoming missions

China's satellite navigation industry sees rapid development

China's Yuanwang-7 departs for space monitoring missions

China's tracking ship Yuanwang-2 starts new mission after retirement

EXO WORLDS
L'SPACE program at ASU puts students on pathway to space workforce

Downstream Gateway: bringing space down to Earth

Aerospace Workforce Training - A National Mandate for the Future

Kleos Space appoints Ground Station Service Provider

EXO WORLDS
New lidar instruments peer skyward for clues on weather and climate

Origami-inspired materials could soften the blow for reusable spacecraft

U.S. Air Force's Space Fence Detects Debris from India Anti-Satellite Test

Fears rise China could weaponise rare earths in US tech war

EXO WORLDS
Detecting bacteria in space

Microbes Exhibit Survival Skills in Ethiopia's Mars-like Wonderland

Ammonium fertilized early life on earth

New method to find small exoplanets

EXO WORLDS
On Pluto the Winter is approaching, and the atmosphere is vanishing into frost

Juno Finds Changes in Jupiter's Magnetic Field

Neptune's moon Triton fosters rare icy union

Gas insulation could be protecting an ocean inside Pluto









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.