. 24/7 Space News .
EXO WORLDS
New insights about carbon and ice could clarify inner workings of Earth, other planets
by Christopher Crockett for UCLA News
Los Angeles CA (SPX) May 23, 2019

New simulations suggest that carbon (C) routinely bonded with iron (Fe), silicon (Si) and oxygen (O) deep within the magma ocean that covered Earth when it was young. Those heavy molecules would have eventually sunk to the planet's core, hinting at hidden stores of carbon at our planet's center.

Most people behave differently when under extreme pressure. Carbon and ice are no different. Two new studies show how these key planetary ingredients take on exotic forms that could help researchers better understand the composition of Earth's core as well as the cores of planets across the galaxy.

Craig Manning, a UCLA professor of geology and geochemistry, is a co-senior author of one of the papers, which was published in the journal Nature, and senior author of the other, which was published in Nature Communications in February.

The Nature Communications paper revealed that high pressure deep inside the young Earth may have driven vast stores of carbon into the planet's core while also setting the stage for diamonds to form. In the Nature report, researchers found that water ice undergoes a complex crystalline metamorphosis as the pressure slowly ratchets up.

Scientists have long understood that the amount of carbon sequestered in present-day Earth's rocks, oceans and atmosphere is always in flux because the planet shuffles the element around in a vast cycle that helps regulate climate.

But researchers don't know whether the Earth locked away even more carbon deep in its interior during its formative years - information that could reveal a little more about how our planet and others like it are built.

To pursue an answer to that question, Manning and colleagues calculated how carbon might have interacted with other atoms under conditions similar to those that prevailed roughly 4.5 billion years ago, when much of Earth was still molten.

Using supercomputers, the team created simulations to explore what would happen to carbon at temperatures above 3,000 degrees Celsius (more than 5,400 degrees Fahrenheit) and at pressures more than 100,000 times of those on Earth's surface today.

The experiment revealed that under those conditions, carbon tends to link up with iron, which implies that there might be considerable quantities of carbon sealed in Earth's iron core today. Researchers had already suspected that in the young planet's magma ocean, iron atoms hooked up with one another and then dropped to the planet's center. But the new research suggests that this molten iron rain may have also dragged carbon down with it. Until now, researchers weren't even sure whether carbon exists down there.

The team also found that as the pressure ramps up, carbon increasingly bonds with itself, forming long chains of carbon atoms with oxygen atoms sticking out.

"These complex chains are a form of carbon bonding that we really hadn't anticipated at these conditions," Manning said.

Such molecules could be a precursor to diamonds, which consist of many carbon atoms linked together.

Solving an icy enigma
The machinations of carbon under pressure provide clues as to how Earth-like planets are built. Frozen planets and moons in other solar systems, however, may also have to contend with water ice. In a separate paper, Manning and another team of scientists looked at how the molecular structure of extremely cold ice changes when put under intense pressure.

Under everyday conditions, water ice is made up of molecules laid out in honeycomb-like mosaics of hexagons. But when ice is exposed to crushing pressure or very low temperature - in labs or possibly deep inside remote worlds - the molecules can assume a bewildering variety of patterns.

One of those patterns, known as amorphous ice, is an enigma. In amorphous ice, the water molecules eschew rigid crystalline order and take on a free-form arrangement. Manning and colleagues set out to try and understand how amorphous ice forms.

First, they chilled normal ice to about 170 degrees below zero Celsius (about 274 degrees below zero Fahrenheit). Then, they locked the ice in the jaws of a high-tech vice grip inside a cryogenic vacuum chamber.

Finally, over the span of several hours, they slowly stepped up the pressure in the chamber to about 15,000 times atmospheric pressure. They stopped raising the pressure periodically to fire neutrons through the ice so that they could see the arrangement of the water molecules.

Surprisingly to the researchers, the amorphous ice never formed. Instead, the molecules went through a series of previously known crystalline arrangements.

However, when the researchers conducted the same experiment but raised the pressure much more rapidly - this time in just 30 minutes - amorphous ice formed as expected. The results suggest that time is the secret ingredient: When pressure increases slowly, tiny seeds of crystalline ice have time to form and take over the sample. Otherwise, those seeds never get a chance to grow.

The findings, published May 23 in the journal Nature, could be useful to researchers who study worlds orbiting other suns and are curious about what conditions might be like deep inside frozen planets.

"It's entirely likely that there are planets dominated by ice in other solar systems that could obtain these pressures and temperatures with ease," Manning said. "We have to have this right if we're going to have a baseline for understanding the interiors of cold worlds that may not be like Earth."


Related Links
University of California - Los Angeles
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
Small, hardy planets can survive stellar end sequence
Warwick UK (SPX) May 15, 2019
Small, hardy planets packed with dense elements have the best chance of avoiding being crushed and swallowed up when their host star dies, new research from the University of Warwick has found. Astrophysicists from the Astronomy and Astrophysics Group have modelled the chances of different planets being destroyed by tidal forces when their host stars become white dwarfs and have determined the most significant factors that decide whether they avoid destruction. Their 'survival guide' for exo ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
NASA Testing Method to Grow Bigger Plants in Space

NASA Selects Studies for Future Space Communications and Services

Trump, NASA want another $1.6 billion to return America to the moon

Oscar Avalos Dreams in Titanium

EXO WORLDS
ULA Completes Final Design Review for New Vulcan Centaur Rocket

ESA signs contracts for enhanced Ariane 6 composite upper stage technologies

Advanced rocket engine ready for space mission

Rocket Lab to launch rideshare mission for Spaceflight

EXO WORLDS
NASA Closer to Discovering What Lies Beneath the Surface of Airless Planetary Bodies

NASA Invites Public to Submit Names to Fly Aboard Next Mars Rover

Exploring life on Mars in the Gobi desert

Mars 2020 Is Coming Together

EXO WORLDS
China develops new-generation rockets for upcoming missions

China's satellite navigation industry sees rapid development

China's Yuanwang-7 departs for space monitoring missions

China's tracking ship Yuanwang-2 starts new mission after retirement

EXO WORLDS
L'SPACE program at ASU puts students on pathway to space workforce

Downstream Gateway: bringing space down to Earth

Aerospace Workforce Training - A National Mandate for the Future

Kleos Space appoints Ground Station Service Provider

EXO WORLDS
Small but Mighty: Mini Version of Extreme Environments Chamber Extends Planetary Science

Kilogram to be based on physical absolute instead of single, physical object

Reprogrammable satellite takes shape

Fears rise China could weaponise rare earths in US tech war

EXO WORLDS
Ammonium fertilized early life on earth

NASA Team Teaches Algorithms to Identify Life

Small, hardy planets can survive stellar end sequence

Gravitational forces in protoplanetary disks may push super-Earths close to their stars

EXO WORLDS
On Pluto the Winter is approaching, and the atmosphere is vanishing into frost

Gas insulation could be protecting an ocean inside Pluto

Juno Finds Changes in Jupiter's Magnetic Field

NASA's New Horizons Team Publishes First Kuiper Belt Flyby Science Results









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.