. | . |
New lidar instruments peer skyward for clues on weather and climate by Staff Writers San Jose CA (SPX) May 22, 2019
Researchers have developed a set of diode-based lidar instruments that could help fill important gaps in meteorological observations and fuel a leap in understanding, modeling and predicting weather and climate. The instruments are particularly well suited for insights on atmospheric dynamics at the mesoscale, a size range equivalent to the area of a small city up to that of a U.S. state. Collaborators from Montana State University (MSU) in Bozeman and the National Center for Atmospheric Research (NCAR) in Boulder, Colo. will discuss the work during The Optical Society's Optical Sensors and Sensing Congress, which will take place from 25-27 June in San Jose, Calif., during Sensors Expo 2019. So far, the team has created five diode-based micro-pulse differential absorption lidar (DIAL) instruments--MPD instruments, for short--for profiling water vapor in the lower troposphere, the region of the atmosphere where most weather occurs. Diode laser based instruments operate in the range of wavelengths from 650 to 1,000 nanometers, mostly within the infrared spectrum. The instruments can be deployed both day and night, largely unattended, without risking eye damage to humans. "The network of five water vapor MPD instruments was deployed to the atmospheric radiation measurement Southern Great Plains atmospheric observatory in mid-April," team member Catharine Bunn said. "From this three-month field experiment we will gain insight into how weather forecasting may be impacted by continuous MPD measurements of atmospheric water vapor.
Filling monitoring gaps However, there has been a gap in the instrumentation to meet this vision for research and monitoring without relying on aircraft-based devices, which are expensive to deploy. Building on prior work by other teams and collaborating with NCAR scientists, MSU instrument developers turned to diode-based MPD technology as an economical route to a profiler that could make accurate measurements and fulfill desired specifications for continuous, unattended operation and eye safety.
Demonstrating value in the field One instrument, developed collaboratively by MSU and NCAR scientists, was fielded as part of the Front Range Air Pollution and Photochemistry Experiment (FRAPPE). The instrument measured the vertical water vapor profile with less than 10 percent mean error over a range of atmospheric conditions, as compared to profiles collected by airborne devices. It also ran unattended for 50 continuous days during FRAPPE with no apparent performance decline, providing about 95 percent data coverage. The researchers have also advanced toward vertically profiling two other high-interest features of the lower troposphere: aerosols and temperature. Based on the MPD architecture NCAR researchers built a novel high spectral resolution lidar (HSRL) capable of profiling aerosols. Complementing this work, an MSU physicist adapted mathematical techniques from quantum mechanics to solve an equation that opens the door to using measurements of properties of oxygen molecules and other atmospheric data to create a vertical temperature profile. Models and preliminary experiments suggest that in addition to measuring water vapor and other airborne particles, the HSRL can provide measurements needed for fine-grained, high frequency temperature profiling. During the June Congress, the researchers are planning to provide the latest about their temperature profiling work and other updates on their instrumentation. For now, Bunn said, "We are beginning to retrieve temperature profiles of the lower troposphere with an accuracy of +/- 2 Kelvin and we are working to improve instrument and retrieval algorithm performance."
Raytheon awarded $28M for AN/SPY-6(V) radar integration, production Washington (UPI) Apr 22, 2019 Raytheon has been awarded a $28 million contract for integration and production support of the AN/SPY-6(V) air and missile defense radar for the U.S. Navy. The contract will include support for continued combat system integration and testing, engineering, training, software and depot maintenance as well as field engineering services, the Defense Department announced Friday. Work is expected to be completed by this December. The work will be performed at various locations, includin ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |