. 24/7 Space News .
OUTER PLANETS
Gas insulation could be protecting an ocean inside Pluto
by Staff Writers
Sapporo, Japan (SPX) May 21, 2019

The proposed interior structure of Pluto. A thin clathrate (gas) hydrate layer works as a thermal insulator between the subsurface ocean and the ice shell, keeping the ocean from freezing.

A gassy insulating layer beneath the icy surfaces of distant celestial objects could mean there are more oceans in the universe than previously thought.

Computer simulations provide compelling evidence that an insulating layer of gas hydrates could keep a subsurface ocean from freezing beneath Pluto's icy exterior, according to a study published in the journal Nature Geoscience.

In July 2015, NASA's New Horizons spacecraft flew through Pluto's system, providing the first-ever close-up images of this distant dwarf planet and its moons. The images showed Pluto's unexpected topography, including a white-colored ellipsoidal basin named Sputnik Planitia, located near the equator and roughly the size of Texas.

Because of its location and topography, scientists believe a subsurface ocean exists beneath the ice shell which is thinned at Sputnik Planitia. However, these observations are contradictory to the age of the dwarf planet because the ocean should have frozen a long time ago and the inner surface of the ice shell facing the ocean should have also been flattened.

Researchers at Japan's Hokkaido University, the Tokyo Institute of Technology, Tokushima University, Osaka University, Kobe University, and at the University of California, Santa Cruz, considered what could keep the subsurface ocean warm while keeping the ice shell's inner surface frozen and uneven on Pluto.

The team hypothesized that an "insulating layer" of gas hydrates exists beneath the icy surface of Sputnik Planitia. Gas hydrates are crystalline ice-like solids formed of gas trapped within molecular water cages. They are highly viscous, have low thermal conductivity, and could therefore provide insulating properties.

The researchers conducted computer simulations covering a timescale of 4.6 billion years, when the solar system began to form. The simulations showed the thermal and structural evolution of Pluto's interior and the time required for a subsurface ocean to freeze and for the icy shell covering it to become uniformly thick. They simulated two scenarios: one where an insulating layer of gas hydrates existed between the ocean and the icy shell, and one where it did not.

The simulations showed that, without a gas hydrate insulating layer, the subsurface sea would have frozen completely hundreds of millions of years ago; but with one, it hardly freezes at all. Also, it takes about one million years for a uniformly thick ice crust to completely form over the ocean, but with a gas hydrate insulating layer, it takes more than one billion years.

The simulation's results support the possibility of a long-lived liquid ocean existing beneath the icy crust of Sputnik Planitia.

The team believes that the most likely gas within the hypothesized insulating layer is methane originating from Pluto's rocky core. This theory, in which methane is trapped as a gas hydrate, is consistent with the unusual composition of Pluto's atmosphere - methane-poor and nitrogen-rich.

Similar gas hydrate insulating layers could be maintaining long-lived subsurface oceans in other relatively large but minimally heated icy moons and distant celestial objects, the researchers conclude.

"This could mean there are more oceans in the universe than previously thought, making the existence of extraterrestrial life more plausible," says Shunichi Kamata of Hokkaido University who led the team.

Research paper


Related Links
Hokkaido University
The million outer planets of a star called Sol


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


OUTER PLANETS
NASA's New Horizons Team Publishes First Kuiper Belt Flyby Science Results
Laurel MD (SPX) May 17, 2019
NASA's New Horizons mission team has published the first profile of the farthest world ever explored, a planetary building block and Kuiper Belt object called 2014 MU69. Analyzing just the first sets of data gathered during the New Horizons spacecraft's New Year's 2019 flyby of MU69 (nicknamed Ultima Thule) the mission team quickly discovered an object far more complex than expected. The team publishes the first peer-reviewed scientific results and interpretations - just four months after the flyby - in ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

OUTER PLANETS
NASA Testing Method to Grow Bigger Plants in Space

Oscar Avalos Dreams in Titanium

House committee limits Space Development Agency funding, asks for detailed plans

Trump, NASA want another $1.6 billion to return America to the moon

OUTER PLANETS
Rocket Lab to launch rideshare mission for Spaceflight

SpaceX's Dragon Cargo capsule docks with Space Station

SpinLaunch Breaks Ground for New Test Facility at Spaceport America

Ariane 6 series production begins with first batch of 14 launchers

OUTER PLANETS
NASA's MRO Completes 60,000 Trips Around Mars

How the Sun pumps out water from Mars into space

New water cycle on Mars discovered

For InSight, dust cleanings will yield new science

OUTER PLANETS
China develops new-generation rockets for upcoming missions

China's satellite navigation industry sees rapid development

China's Yuanwang-7 departs for space monitoring missions

China's tracking ship Yuanwang-2 starts new mission after retirement

OUTER PLANETS
Downstream Gateway: bringing space down to Earth

Kleos Space appoints Ground Station Service Provider

Aerospace Workforce Training - A National Mandate for the Future

SpaceX nears first launch of its Starlink satellites

OUTER PLANETS
Louisiana-based Geocent's Advanced Aerospace Materials to Fly Aboard International Space Station

Reprogrammable satellite takes shape

Mission-Saving NASA Instrument Secures New Flight Opportunity; Slated for Significant Upgrade

BAE Systems Radiation-hardened Electronics in Orbit a Total of 10,000 Years

OUTER PLANETS
NASA Team Teaches Algorithms to Identify Life

Small, hardy planets can survive stellar end sequence

Gravitational forces in protoplanetary disks may push super-Earths close to their stars

Rare-Earth metals in the atmosphere of a glowing-hot exoplanet

OUTER PLANETS
NASA's New Horizons Team Publishes First Kuiper Belt Flyby Science Results

Brazilian scientists investigate dwarf planet's ring

Next-Generation NASA Instrument Advanced to Study the Atmospheres of Uranus and Neptune

Public Invited to Help Name Solar System's Largest Unnamed World









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.