. 24/7 Space News .
Neptune's moon Triton fosters rare icy union
by Staff Writers
Washington DC (SPX) May 23, 2019

Voyager 2 image of Triton showing the south polar region with dark streaks produced by geysers visible on the icy surface.

Astronomers using the Gemini Observatory explore Neptune's largest moon Triton and observe, for the first time beyond the lab, an extraordinary union between carbon monoxide and nitrogen ices. The discovery offers insights into how this volatile mixture can transport material across the moon's surface via geysers, trigger seasonal atmospheric changes, and provide a context for conditions on other distant, icy worlds.

Extreme conditions can produce extreme results. In this case, it's the uncommon pairing of two common molecules - carbon monoxide (CO) and nitrogen (N2) - frozen as solid ices on Neptune's frigid moon Triton.

In the laboratory, an international team of scientists have pinpointed a very specific wavelength of infrared light absorbed when carbon monoxide and nitrogen molecules join together and vibrate in unison. Individually, carbon monoxide and nitrogen ices each absorb their own distinct wavelengths of infrared light, but the tandem vibration of an ice mixture absorbs at an additional, distinct wavelength identified in this study.

Using the 8-meter Gemini South Telescope in Chile, the team have recorded this same unique infrared signature on Triton. Key to the discovery was the high-resolution spectrograph called IGRINS (Immersion Grating Infrared Spectrometer) which was built as a collaboration between the University of Texas at Austin and the Korea Astronomy and Space Science Institute (KASI). Both the Gemini Observatory and IGRINS receive funding from the US National Science Foundation (NSF) and KASI.

"While the icy spectral fingerprint we uncovered was entirely reasonable, especially as this combination of ices can be created in the lab, pinpointing this specific wavelength of infrared light on another world is unprecedented," said Stephen C. Tegler of Northern Arizona University's Astrophysical Materials Laboratory who led the international study. The research results have been accepted for publication in the Astronomical Journal.

In the Earth's atmosphere carbon monoxide and nitrogen molecules exist as gases, not ices. In fact, molecular nitrogen is the dominant gas in the air we breath, and carbon monoxide is a rare contaminant that can be lethal.

On distant Triton, however, carbon monoxide and nitrogen freeze as solid ices. They can form their own independent ices, or can condense together in the icy mix detected in the Gemini data. This icy mix could be involved in Triton's iconic geysers first seen in Voyager 2 spacecraft images as dark, windblown streaks on the surface of the distant, icy moon.

The Voyager 2 spacecraft first captured Triton's geysers in action in the moon's south polar region back in 1989. Since then, theories have focused on an internal ocean as one possible source of erupted material. Or, the the geysers may erupt when the summertime Sun heats this thin layer of volatile ice on Triton's surface, potentially involving the mixed carbon monoxide and nitrogen ice revealed by the Gemini observation. That ice mixture could also migrate around the surface of Triton in response to seasonally varying patterns of sunlight.

"Despite Triton's distance from the Sun and the cold temperatures, the weak sunlight is enough to drive strong seasonal changes on Triton's surface and atmosphere," adds Henry Roe, Deputy Director of Gemini and a member of the research team.

"This work demonstrates the power of combining laboratory studies with telescope observations to understand complex planetary processes in alien environments so different from what we encounter every day here on Earth."

Seasons progress slowly on Triton, as Neptune takes 165-Earth years to orbit the Sun. A season on Triton lasts a little over 40 years; Triton passed its southern summer solstice mark in 2000, leaving about 20 more years to conduct further research before its autumn begins.

Looking ahead, the researchers expect that these findings will shed light on the composition of ices and seasonal variations in the atmosphere on other distant worlds beyond Neptune. Astronomers have suspected that the mixing of carbon monoxide and nitrogen ice exists not only on Triton, but also on Pluto, where the New Horizons spacecraft found the two ices coexisting. This Gemini finding is the first direct spectroscopic evidence of these ices mixing and absorbing this type of light on either world.

Background: Triton orbits Neptune, the eighth planet from the Sun, some 2.7 billion miles from Earth - at the cold outer fringe of our Solar System's major planet zone. It is the only large moon in the Solar System that orbits "backwards" or in the opposite direction to its planet's rotation. The peculiar motion suggests that Triton is a captured trans-Neptunian object from the Kuiper Belt - a region of leftovers from the Solar System's early history, which is why it shares several features with the dwarf planet Pluto and Eris: size (roughly two-thirds that of our Moon), and surface temperatures that hover near absolute zero; so low that common compounds we know as gases on Earth freeze into ices.

Triton's atmosphere is also 70,000 times less dense than Earth's and is composed of nitrogen, methane, and carbon monoxide. Its surface appears to consist of two different terrains, one composed by the volatile ices and the second one formed by water and carbon dioxide ices.

Molecular nitrogen is thought to have been the most common type of nitrogen available when the Solar System was forming. Its abundance in the outer Solar System is an important key to life's origins, as it is an important part of the building blocks of life.

Related Links
Association of Universities for Research in Astronomy (AURA)
The million outer planets of a star called Sol

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

Gas insulation could be protecting an ocean inside Pluto
Sapporo, Japan (SPX) May 21, 2019
A gassy insulating layer beneath the icy surfaces of distant celestial objects could mean there are more oceans in the universe than previously thought. Computer simulations provide compelling evidence that an insulating layer of gas hydrates could keep a subsurface ocean from freezing beneath Pluto's icy exterior, according to a study published in the journal Nature Geoscience. In July 2015, NASA's New Horizons spacecraft flew through Pluto's system, providing the first-ever close-up images ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NASA Testing Method to Grow Bigger Plants in Space

NASA Selects Studies for Future Space Communications and Services

Trump, NASA want another $1.6 billion to return America to the moon

Oscar Avalos Dreams in Titanium

ULA Completes Final Design Review for New Vulcan Centaur Rocket

ESA signs contracts for enhanced Ariane 6 composite upper stage technologies

Advanced rocket engine ready for space mission

Rocket Lab to launch rideshare mission for Spaceflight

NASA Closer to Discovering What Lies Beneath the Surface of Airless Planetary Bodies

NASA Invites Public to Submit Names to Fly Aboard Next Mars Rover

Exploring life on Mars in the Gobi desert

Mars 2020 Is Coming Together

China develops new-generation rockets for upcoming missions

China's satellite navigation industry sees rapid development

China's Yuanwang-7 departs for space monitoring missions

China's tracking ship Yuanwang-2 starts new mission after retirement

L'SPACE program at ASU puts students on pathway to space workforce

Downstream Gateway: bringing space down to Earth

Aerospace Workforce Training - A National Mandate for the Future

Kleos Space appoints Ground Station Service Provider

Small but Mighty: Mini Version of Extreme Environments Chamber Extends Planetary Science

Kilogram to be based on physical absolute instead of single, physical object

Reprogrammable satellite takes shape

Fears rise China could weaponise rare earths in US tech war

Ammonium fertilized early life on earth

NASA Team Teaches Algorithms to Identify Life

Small, hardy planets can survive stellar end sequence

Gravitational forces in protoplanetary disks may push super-Earths close to their stars

On Pluto the Winter is approaching, and the atmosphere is vanishing into frost

Gas insulation could be protecting an ocean inside Pluto

Juno Finds Changes in Jupiter's Magnetic Field

NASA's New Horizons Team Publishes First Kuiper Belt Flyby Science Results

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.