. 24/7 Space News .
TECH SPACE
Materials could delay frost up to 300 times longer than existing anti-icing coatings
by Staff Writers
Chicago IL (SPX) Mar 19, 2019

Water condenses on phase switching liquid.

Most techniques to prevent frost and ice formation on surfaces rely heavily on heating or liquid chemicals that need to be repeatedly reapplied because they easily wash away. Even advanced anti-icing materials have problems functioning under conditions of high humidity and subzero conditions, when frost and ice formation go into overdrive.

Now, researchers from the University of Illinois at Chicago College of Engineering describe for the first time several unique properties of materials known as phase-switching liquids, or PSLs, that hold promise as next-generation anti-icing materials. PSLs can delay ice and frost formation up to 300 times longer than state-of-the-art coatings being developed in laboratories. Their findings are published in the journal Advanced Materials.

"Ice and frost pose hazards to people and can damage machines and reduce functionality of some technologies, especially those related to energy and transportation, so we have been interested in finding possible ways to overcome their harmful effects, and phase-switching liquids are very promising candidates," said Sushant Anand, assistant professor of mechanical and industrial engineering and corresponding author of the paper.

PSLs are a subset of phase change materials that have melting points higher than the freezing point of water, which is 0 degrees Celsius, meaning that they would be solids at a range of temperatures close to that at which water freezes. Examples of such materials include cyclohexane, cyclooctane, dimethyl sulfoxide, glycerol, and more.

"At sub-zero temperatures, all PSLs turn solid. So, on a winter day, you could coat a surface where you don't want icing with a PSL material and it would remain there much longer than most deicing liquids, which demand frequent reapplication," said Rukmava Chatterjee, a doctoral student in the UIC College of Engineering and the first author of the paper.

While researchers have known about phase change materials for a long time, their unique anti-icing and anti-frosting properties have not been investigated before, Chatterjee explained. Decades ago, Daniel Beysens, research director of the physics and mechanics of heterogeneous media laboratory at Universite de recherche Paris Sciences et Lettres and a co-author on the paper, had observed that when materials like cyclohexane were cooled just below their melting points, water droplets condensing on the surface would move around erratically.

"We had looked into this erratic motion before, and we had shown that it originated from the melting of the cyclohexane induced by the heat released into these materials during water droplet condensation," Anand said.

In their current research, Anand and Chatterjee cooled a range of PSLs to -15 degrees Celsius, rendering them all solid. Under high humidity conditions, they noticed that the solidified PSLs melted directly underneath and in the immediate vicinity of water droplets condensing on the PSLs.

"We were expecting that the erratic droplet motion would stop upon cooling the surface to -15C. But to our surprise, we found that the droplets kept on showing the same hopping motion even at very low temperatures," Anand said. "It turns out that PSLs are extremely adept at trapping this released heat.

"This quality, combined with the fact that condensed water droplets become extremely mobile on these cooled PSLs means that the formation of frost is significantly delayed. Yes, at a certain point, ice does eventually form and that is inevitable, but some of the PSLs we tested are water soluble, and this contributes to their anti-freezing properties and can help delay ice formation much longer than even the advanced anti-icing coatings."

Anand and Chatterjee saw the same frost delaying effect with the PSLs even when they were applied as extremely thin layers to objects.

"In our first set of experiments, the PSL coating we used was about 3 millimeters thick. But we also tested them as very thin coatings, like a film, and still saw the same freezing delay effect," Anand said. "This means that we can potentially use PSLs to coat objects like car windshields or turbine blades without compromising the object's functionality."

In further experiments, the researchers found that PSLs have a wide range of optical transparencies, can self-repair after being scratched and can purge liquid-borne contaminants.

"The unique properties of PSLs, which we describe for the first time in this paper, make them excellent candidates for next-generation materials to prevent frost and ice development on surfaces," Anand said.

Because PSLs are solids at low temperatures, he anticipates that they wouldn't need to be applied as often as liquid anti-icing agents because they would have better staying power.

"But, of course, we need to conduct additional experiments to determine their limits and figure out if there are ways we can further maximize their ice/frost-repelling abilities," he said.

Research paper


Related Links
University of Illinois at Chicago
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Researchers eye huge supply of rare-earth elements from mining waste
Idaho Falls ID (SPX) Mar 15, 2019
Researchers have examined a method to extract rare-earth elements from mining waste that could provide the world with a reliable supply of the valuable materials. The research, led by Idaho National Laboratory and Rutgers University with support from the Critical Materials Institute, is online and in an upcoming issue of the Journal of Chemical Thermodynamics. Rare-earth elements (REEs) - a class of metallic elements including neodymium and dysprosium - are necessary for the manufacture of m ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Astronauts on aborted Soyuz launch to blast off again for ISS

Astronauts who survived Soyuz scare ready for new launch despite glitches

Launch vehicle with Soyuz MS-12 CTS is on the launch pad

Out of This World Auction Sponsored by ARISS

TECH SPACE
XQ-58A Valkyrie demonstrator completes inaugural flight

X-60A hypersonic flight research vehicle program completes critical design review

Illinois Native Uses Experience On Farm To Build Deep Space Rocket

SpaceX CEO Musk on Russia's Rocket Engineering, Engines: 'Excellent'

TECH SPACE
Opportunity's parting shot was a beautiful panorama

SWIM Project Maps Potential Sources of Mars Water

Major challenges to sending astronauts to search for life on Mars

Researchers outline goals for collecting and studying samples from Mars

TECH SPACE
China preparing for space station missions

China's lunar rover studies stones on moon's far side

China improves Long March-6 rocket for growing commercial launches

Seed of moon's first sprout: Chinese scientists' endeavor

TECH SPACE
Space workshops to power urban innovation

ESA helps firms large and small prosper in global satcom market

How ESA helps launch bright ideas and new careers

Next-generation space industry jobs ready for take-off

TECH SPACE
Ultrathin and ultrafast: Scientists pioneer new technique for two-dimensional material analysis

Spontaneous spin polarization demonstrated in a two-dimensional material

Researchers turn liquid metal into a plasma

Researchers eye huge supply of rare-earth elements from mining waste

TECH SPACE
SETI Institute: Agreement with Unistellar to Develop Citizen Science Network

K stars more likely to host habitable exoplanets

UK to tackle danger of solar wind and find new Earth-like planets

"Goldilocks" Stars May Be "Just Right" for Finding Habitable Worlds

TECH SPACE
Ultima Thule in 3D

SwRI-led New Horizons research indicates small Kuiper Belt objects are surprisingly rare

Astronomers Optimistic About Planet Nine's Existence

New Horizons Spacecraft Returns Its Sharpest Views of Ultima Thule









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.