. | . |
Researchers turn liquid metal into a plasma by Staff Writers Rochester NY (SPX) Mar 15, 2019
Most laypersons are familiar with the three states of matter as solids, liquids, and gases. But there are other forms that exist. Plasmas, for example, are the most abundant form of matter in the universe, found throughout our solar system in the sun and other planetary bodies. Scientists are still working to understand the fundamentals of this state of matter, which is proving to be ever more significant, not only in explaining how the universe works but in harnessing material for alternative forms of energy. For the first time, researchers at the University of Rochester's Laboratory for Laser Energetics (LLE) have found a way to turn a liquid metal into a plasma and to observe the temperature where a liquid under high-density conditions crosses over to a plasma state. Their observations, published in Physical Review Letters, have implications for better understanding stars and planets and could aid in the realization of controlled nuclear fusion - a promising alternative energy source whose realization has eluded scientists for decades. The research is supported by the US Department of Energy and the National Nuclear Security Administration.
What Is A Plasma? Scientists are able to generate artificial plasmas here on Earth, typically by heating a gas to thousands of degrees Fahrenheit, which strips the atoms of their electrons. On a smaller scale, this is the same process that allows plasma TVs and neon signs to "glow": electricity excites the atoms of a neon gas, causing neon to enter a plasma state and emit photons of light.
From A Liquid To A Plasma One of the unique aspects of this observation is that liquid metals at high densities exhibit quantum properties; however, if they are allowed to cross over to the plasma state at high densities, they will exhibit classical properties. In the 1920s, Enrico Fermi and Paul Dirac, two of the founders of quantum mechanics, introduced the statistical formulation that describes the behavior of matter made out of electrons, neutrons, and protons - normal matter that makes up the objects of Earth. Fermi and Dirac hypothesized that at certain conditions - extremely high densities or extremely low temperatures - electrons or protons have to assume certain quantum properties that are not described by classical physics. A plasma, however, does not follow this paradigm. In order to observe a liquid metal crossing over to a plasma, the LLE researchers started off with the liquid metal deuterium, which displayed the classical properties of a liquid. To increase the density of the deuterium, they cooled it to 21 degrees Kelvin (-422 degrees Fahrenheit). The researchers then used the LLE's OMEGA lasers to set off a strong shockwave through the ultracool liquid deuterium. The shockwave compressed the deuterium to pressures up to five million times greater than atmospheric pressure, while also increasing its temperatures to almost 180,000 degrees Fahrenheit. The sample started off completely transparent, but as the pressure rose, it transformed into a shiny metal with high optical reflectivity. "By monitoring the reflectance of the sample as a function of its temperature, we were able to observe the precise conditions where this simple lustrous liquid metal transformed into a dense plasma," Zaghoo says.
Understanding Matter At Extreme Conditions That is, the LLE researchers started off with a simple liquid. Increasing the density to extreme conditions made the liquid enter a state where it exhibited quantum properties. Raising the temperature even further made it turn into a plasma, at which point it exhibited classical properties, yet was still under high-density conditions, says Suxing Hu, a senior scientist at LLE and a co-author on the study. "What is remarkable is that the conditions at which this crossover between quantum and classical occurs is different from what most people expected based on plasma textbooks. Furthermore, this behavior could be universal to all other metals." Understanding these fundamentals of liquids and plasmas allows researchers to develop new models to describe how materials at high densities conduct electricity and heat, and can help explain matter in the extremes of the solar system, as well as help in attaining fusion energy, Zaghoo says. "This work is not just a laboratory curiosity. Plasmas comprise the vast interiors of astrophysical bodies like brown dwarfs and also represent the states of matter needed to achieve thermonuclear fusion. These models are essential in our understanding of how to better design experiments to achieve fusion."
Researchers engineer a tougher fiber Raleigh NC (SPX) Mar 11, 2019 North Carolina State University researchers have developed a fiber that combines the elasticity of rubber with the strength of a metal, resulting in a tougher material that could be incorporated into soft robotics, packaging materials or next-generation textiles. "A good way of explaining the material is to think of rubber bands and metal wires," says Michael Dickey, corresponding author of a paper on the work and Alcoa Professor of Chemical and Biomolecular Engineering at NC State. "A rubbe ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |