. 24/7 Space News .
TECH SPACE
Ultrathin and ultrafast: Scientists pioneer new technique for two-dimensional material analysis
by Staff Writers
Lemont IL (SPX) Mar 15, 2019

This image shows the experimental setup for a newly developed technique: ultrafast surface X-ray scattering. This technique couples an optical pump with an X-ray free-electron laser probe to investigate molecular dynamics on the femtosecond time scale.

Discovery allows scientists to look at how 2D materials move with ultrafast precision. Using a never-before-seen technique, scientists have found a new way to use some of the world's most powerful X-rays to uncover how atoms move in a single atomic sheet at ultrafast speeds.

The study, led by researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory and in collaboration with other institutions, including the University of Washington and DOE's SLAC National Accelerator Laboratory, developed a new technique called ultrafast surface X-ray scattering. This technique revealed the changing structure of an atomically thin two-dimensional crystal after it was excited with an optical laser pulse.

"Extending [surface X-ray scattering] to do ultrafast science in single-layer materials represents a major technological advance that can show us a great deal about how atoms behave at surfaces and at the interfaces between materials." - Argonne scientist Haidan Wen

Unlike previous surface X-ray scattering techniques, this new method goes beyond providing a static picture of the atoms on a material's surface to capture the motions of atoms on timescales as short as trillionths of a second after laser excitation.

Static surface X-ray scattering and some time-dependent surface X-ray scattering can be performed at a synchrotron X-ray source, but to do ultrafast surface X-ray scattering the researchers needed to use the Linac Coherent Light Source (LCLS) X-ray free-electron laser at SLAC.

This light source provides very bright X-rays with extremely short exposures of 50 femtoseconds. By delivering large quantities of photons to the sample quickly, the researchers were able to generate a sufficiently strong time-resolved scattering signal, thus visualizing the motion of atoms in 2D materials.

"Surface X-ray scattering is challenging enough on its own," said Argonne X-ray physicist Hua Zhou, an author of the study. "Extending it to do ultrafast science in single-layer materials represents a major technological advance that can show us a great deal about how atoms behave at surfaces and at the interfaces between materials."

In two-dimensional materials, atoms typically vibrate slightly along all three dimensions under static conditions. However, on ultrafast time scales, a different picture of atomic behavior emerges, said Argonne physicist and study author Haidan Wen.

Using ultrafast surface X-ray scattering, Wen and postdoctoral researcher I-Cheng Tung led an investigation of a two-dimensional material called tungsten diselenide (WSe2). In this material, each tungsten atom connects to two selenium atoms in a "V" shape. When the single-layer material is hit with an optical laser pulse, the energy from the laser causes the atoms to move within the plane of the material, creating a counterintuitive effect.

"You normally would expect the atoms to move out of the plane, since that's where the available space is," Wen said. "But here we see them mostly vibrate within the plane right after excitation."

These observations were supported by first-principle calculations led by Aiichiro Nakano at University of Southern California and scientist Pierre Darancet of Argonne's Center for Nanoscale Materials (CNM), a DOE Office of Science User Facility.

The team obtained preliminary surface X-ray scattering measurements at Argonne's Advanced Photon Source (APS), also a DOE Office of Science User Facility. These measurements, although they were not taken at ultrafast speeds, allowed the researchers to calibrate their approach for the LCLS free-electron laser, Wen said.

The direction of atomic shifts and the ways in which the lattice changes have important effects on the properties of two-dimensional materials like WSe2, according to University of Washington professor Xiaodong Xu. "Because these 2-D materials have rich physical properties, scientists are interested in using them to explore fundamental phenomena as well as potential applications in electronics and photonics," he said.

"Visualizing the motion of atoms in single atomic crystals is a true breakthrough and will allow us to understand and tailor material properties for energy relevant technologies."

"This study gives us a new way to probe structural distortions in 2-D materials as they evolve, and to understand how they are related to unique properties of these materials that we hope to harness for electronic devices that use, emit or control light," added Aaron Lindenberg, a professor at SLAC and Stanford University and collaborator on the study.

"These approaches are also applicable to a broad class of other interesting and poorly understood phenomena that occur at the interfaces between materials."

Research Report: "Anisotropic structural dynamics of monolayer crystals revealed by femtosecond surface X-ray scattering,"


Related Links
Argonne National Laboratory
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Researchers turn liquid metal into a plasma
Rochester NY (SPX) Mar 15, 2019
Most laypersons are familiar with the three states of matter as solids, liquids, and gases. But there are other forms that exist. Plasmas, for example, are the most abundant form of matter in the universe, found throughout our solar system in the sun and other planetary bodies. Scientists are still working to understand the fundamentals of this state of matter, which is proving to be ever more significant, not only in explaining how the universe works but in harnessing material for alternative forms of ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Astronauts who survived Soyuz scare ready for new launch despite glitches

Launch vehicle with Soyuz MS-12 CTS is on the launch pad

Out of This World Auction Sponsored by ARISS

ISS Multilateral Coordination Board Joint Statement

TECH SPACE
XQ-58A Valkyrie demonstrator completes inaugural flight

X-60A hypersonic flight research vehicle program completes critical design review

Illinois Native Uses Experience On Farm To Build Deep Space Rocket

SpaceX CEO Musk on Russia's Rocket Engineering, Engines: 'Excellent'

TECH SPACE
Opportunity's parting shot was a beautiful panorama

SWIM Project Maps Potential Sources of Mars Water

Major challenges to sending astronauts to search for life on Mars

Researchers outline goals for collecting and studying samples from Mars

TECH SPACE
China preparing for space station missions

China's lunar rover studies stones on moon's far side

China improves Long March-6 rocket for growing commercial launches

Seed of moon's first sprout: Chinese scientists' endeavor

TECH SPACE
Space workshops to power urban innovation

ESA helps firms large and small prosper in global satcom market

How ESA helps launch bright ideas and new careers

Next-generation space industry jobs ready for take-off

TECH SPACE
Ultrathin and ultrafast: Scientists pioneer new technique for two-dimensional material analysis

Spontaneous spin polarization demonstrated in a two-dimensional material

Researchers turn liquid metal into a plasma

Nanotechnology and sunlight clear the way for better visibility

TECH SPACE
SETI Institute: Agreement with Unistellar to Develop Citizen Science Network

K stars more likely to host habitable exoplanets

UK to tackle danger of solar wind and find new Earth-like planets

"Goldilocks" Stars May Be "Just Right" for Finding Habitable Worlds

TECH SPACE
Ultima Thule in 3D

SwRI-led New Horizons research indicates small Kuiper Belt objects are surprisingly rare

Astronomers Optimistic About Planet Nine's Existence

New Horizons Spacecraft Returns Its Sharpest Views of Ultima Thule









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.