. | . |
Spontaneous spin polarization demonstrated in a two-dimensional material by Staff Writers Basel, Switzerland (SPX) Mar 15, 2019
Physicists from the University of Basel have demonstrated spin alignment of free electrons within a two-dimensional material. Writing in the latest edition of Nature Nanotechnology, they described their observation of spontaneous spin polarization, which cannot occur in ideal two-dimensional materials according to a well-known theorem from the 1960s. Two-dimensional materials are the subject of numerous studies. As they are only a few atomic layers thick, they have different physical properties from their three-dimensional equivalents. Graphene, a single layer of carbon atoms arranged in a honeycomb pattern, promises to deliver entirely new applications thanks to its notable electronic properties and is the best-known example of this group of innovative materials. Professor Richard Warburton from the Department of Physics and the Swiss Nanoscience Institute of the University of Basel leads a group studying two-dimensional materials that are also suitable for optical applications. One particularly promising candidate is a single monolayer of molybdenum disulfide (MoS2), as this material has a band gap - unlike graphene - and can therefore emit light when excited.
All in the same direction This caused the intrinsic angular momentum (spin) of all free electrons to point in the same direction, and the spin could be "switched" to the other direction by reversing the magnetic field. Known as "spontaneous spin polarization," this phenomenon came as a complete surprise because a theorem from the 1960s rules out spontaneous spin polarization in an ideal two-dimensional material. "Where does the spin polarization come from? The electrons are interacting with one another, and molybdenum disulfide also exhibits a very weak spin-orbit coupling. These two factors presumably have a massive influence on the system," explains Jonas Roch. The formulation of the 1966 theorem had assumed an absence of spin-orbit interaction. "The results show how exciting experimental physics can be, and how we're constantly learning new things about two-dimensional materials," says Richard Warburton.
At the limits of detectability Munich, Germany (SPX) Mar 11, 2019 While spectroscopic measurements are normally averaged over myriad molecules, a new method developed by researchers at the Technical University of Munich (TUM) provides precise information about the interaction of individual molecules with their environment. This will accelerate the identification of efficient molecules for future photovoltaic technologies, for example. An international team led by the TUM chemist Professor Jurgen Hauer has now succeeded in determining the spectral properties of i ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |