. 24/7 Space News .
TECH SPACE
Researchers eye huge supply of rare-earth elements from mining waste
by Staff Writers
Idaho Falls ID (SPX) Mar 15, 2019

Two major challenges exist with using PG as a source of REEs. First, PG is often mildly radioactive. "There are typically uranium and thorium in these phosphate deposits," Fujita said. "But there are some deposits that are low in these elements."

Researchers have examined a method to extract rare-earth elements from mining waste that could provide the world with a reliable supply of the valuable materials.

The research, led by Idaho National Laboratory and Rutgers University with support from the Critical Materials Institute, is online and in an upcoming issue of the Journal of Chemical Thermodynamics.

Rare-earth elements (REEs) - a class of metallic elements including neodymium and dysprosium - are necessary for the manufacture of many high-tech devices including cellphones, computers and wind turbines.

REEs are difficult to obtain, and the U.S. currently does not produce a domestic supply. This scarcity leaves manufacturers vulnerable to supply disruptions.

But large amounts of REEs exist in phosphogypsum (PG), a waste product from producing phosphoric acid from phosphate rock. The U.S. mined approximately 28 million tons of phosphate rock in 2017. Phosphoric acid is used in the production of fertilizers and other products.

Researchers estimate that more than a billion tons of PG waste are sitting in piles at storage sites across the country, particularly in Idaho and Florida. Worldwide, about 100,000 tons of rare-earth elements per year end up in PG waste. That's almost as much as the nearly 126,000 tons of rare-earth oxides produced worldwide each year.

To test whether rare-earth elements could be obtained from PG, researchers doped synthetic phosphogypsum with six rare-earth elements - yttrium, cerium, neodymium, samarium, europium and ytterbium. They then studied various solutions that could be used to extract the elements.

One solution in particular, a mixture of chemicals produced by the bacterium Gluconobacter oxydans, was especially intriguing for REE recovery. Gluconobacter is a common bacterium found readily in the environment, including on rotting fruit.

Gluconobacter produces organic acids such as gluconic acid that dissolve the REEs from the surrounding material and pulls them into solution in a process called "bioleaching." The REEs could then be precipitated from the solution and purified for industrial use.

Researchers at INL previously used Gluconobacter to recover REEs from spent fluidized catalytic cracking catalyst, a type of material used in petroleum refining, and other REE sources.

In the recent study, the mixture of chemicals produced by Gluconobacter outperformed other acids such as phosphoric acid and gluconic acid alone. Sulfuric acid worked best of the chemicals studied.

The big difference between this study and the team's past research on using Gluconobacter to recover REEs from end-of-life products or industrial wastes is that PG is abundant enough to alleviate the world's REE supply shortages, said INL researchers Yoshiko Fujita and David Reed, both scientists in the Biological and Chemical Processing Department at INL.

Earlier studies have shown that using Gluconobacter for bioleaching can be economically viable and cause fewer impacts on the environment, especially when compared with sulfuric acid. Conventional methods to extract rare-earth elements from ores generate millions of tons of toxic and acidic pollutants.

"With bioleaching, we are using an organic acid that is less harmful to the environment," Fujita said.

Two major challenges exist with using PG as a source of REEs. First, PG is often mildly radioactive. "There are typically uranium and thorium in these phosphate deposits," Fujita said. "But there are some deposits that are low in these elements."

Second, PG is classified as a waste material, which may cause regulatory agencies to restrict access to PG piles.

Still, the interest in tapping this potentially large source of REEs is high. Mining companies have already begun inquiring about the process. Next, researchers hope to test bio-acid on industrial PG and other wastes that are generated during phosphoric acid production and also contain rare-earth elements.

"I think there's such a vast reserve there," Reed said. "At some point, push comes to shove and we're going to have to look at PG as a viable resource. If something happens to the flow of REE material, these PG sources are significant."

Research paper


Related Links
Idaho National Laboratory
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Researchers turn liquid metal into a plasma
Rochester NY (SPX) Mar 15, 2019
Most laypersons are familiar with the three states of matter as solids, liquids, and gases. But there are other forms that exist. Plasmas, for example, are the most abundant form of matter in the universe, found throughout our solar system in the sun and other planetary bodies. Scientists are still working to understand the fundamentals of this state of matter, which is proving to be ever more significant, not only in explaining how the universe works but in harnessing material for alternative forms of ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Astronauts on aborted Soyuz launch to blast off again for ISS

Astronauts who survived Soyuz scare ready for new launch despite glitches

Launch vehicle with Soyuz MS-12 CTS is on the launch pad

Out of This World Auction Sponsored by ARISS

TECH SPACE
XQ-58A Valkyrie demonstrator completes inaugural flight

X-60A hypersonic flight research vehicle program completes critical design review

Illinois Native Uses Experience On Farm To Build Deep Space Rocket

SpaceX CEO Musk on Russia's Rocket Engineering, Engines: 'Excellent'

TECH SPACE
Opportunity's parting shot was a beautiful panorama

SWIM Project Maps Potential Sources of Mars Water

Major challenges to sending astronauts to search for life on Mars

Researchers outline goals for collecting and studying samples from Mars

TECH SPACE
China preparing for space station missions

China's lunar rover studies stones on moon's far side

China improves Long March-6 rocket for growing commercial launches

Seed of moon's first sprout: Chinese scientists' endeavor

TECH SPACE
Space workshops to power urban innovation

ESA helps firms large and small prosper in global satcom market

How ESA helps launch bright ideas and new careers

Next-generation space industry jobs ready for take-off

TECH SPACE
Ultrathin and ultrafast: Scientists pioneer new technique for two-dimensional material analysis

Spontaneous spin polarization demonstrated in a two-dimensional material

Researchers turn liquid metal into a plasma

Nanotechnology and sunlight clear the way for better visibility

TECH SPACE
SETI Institute: Agreement with Unistellar to Develop Citizen Science Network

K stars more likely to host habitable exoplanets

UK to tackle danger of solar wind and find new Earth-like planets

"Goldilocks" Stars May Be "Just Right" for Finding Habitable Worlds

TECH SPACE
Ultima Thule in 3D

SwRI-led New Horizons research indicates small Kuiper Belt objects are surprisingly rare

Astronomers Optimistic About Planet Nine's Existence

New Horizons Spacecraft Returns Its Sharpest Views of Ultima Thule









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.