. 24/7 Space News .
TECH SPACE
How to program materials
by Staff Writers
Zurich, Switzerland (SPX) May 23, 2019

Ali Gooneie looks at a sample from his most recent research project: electrically conductive polymers. The first calculations for his next project are sketched out on the blackboard.

Ali Gooneie simulates on his computer what holds the world together right at its very core: atoms, molecules, molecular chains and bundles - then lumps and fibers, which emerge thereof. With his calculations, the Empa researcher can also explain properties we can feel with our fingertips: smooth and rough surfaces, flexible and rigid materials, heat-conductive substances and insulators.

Many of these properties have their origin deep inside the materials. Metal or wood, plastic or ceramics, stone or gel - all of these have been examined many times before. However, what about composite materials? How do the properties of such materials come about and how can they be altered in a desired way? A tedious trial-and-error approach in the lab is no longer sufficient in today's fast-paced research; nowadays, you need computer-assisted predictions to be able to decide quickly which experimental path you will have to take.

Gooneie is one of many computer simulation experts who work in various research labs at Empa. He studied polymer technology at Amirkabir University of Technology in Tehran and did his doctorate at the University of Leoben in Austria. "Although after my engineering degree I immersed myself ever deeper in the world of physics formulae, I never lost touch with the real world," he says. "For me, simulations are not an end in themselves. I use them to explain the effects we observe in materials."

What does a hair feel like? And above all: why?
In order to understand what exactly Gooneie is calculating, it is worth considering a biological polymer composite fiber material we all know very well: hair. Freshly washed, it feels soft and flexible. When it is dry, it crackles like electricity; and when wet, it squeaks like rubber. We can cut it, pull it out, singe it, perm it, bleach it and blow-dry it. But where do all these properties come from?

Hair consists of individual amino acids, which combine to form long-chain proteins known as keratins. These long keratin molecules bond to form threads and fiber bundles. A complex made of cell membranes cements these fiber bundles together. These fiber bundles are encased by several layers of dead horn scales lying staggered on top of each other like the scales of a pinecone. Therefore, the properties of hair would be inexplicable if only the basic chemical building blocks - the amino acids - were considered. Understanding the overarching structure is crucial.

So let us, in our minds, zoom out of the chemical structure and see the molecules only as globules, which are connected like on a pearl necklace. Now the picture is no longer determined by chemistry, but by the collisions and friction effects of these pearl chains. Experts use coarse mathematical models for their calculations.

Eventually, we arrive in a dimension that we can see and feel: the millimeter range, where hair is considered a homogenous material - the fine structure is no longer important. The material's macroscopic properties can be described and predicted using the "finite element method".

Detailed understanding of fibers
Until only a few years ago, there was no such multidimensional approach in the polymer composites sector. With his research at the University of Leoben, Ali Gooneie had refined this approach, which made him a perfect fit for Empa. The simulation expert moved to St. Gallen and is now conducting research in Empa's Advance Fibers lab under Manfred Heuberger.

One of Heuberger's research goals is to refine synthetic fibers - an economically important topic: These days, around two thirds of all fibers used worldwide are produced synthetically. A synthetic fiber is considerably more than a fine plastic filament.

They only become "fibers" if their molecular structure comprising small crystals and aligned molecules is geared towards the desired properties - such as flexibility or firmness. Only if the fiber structure is known from the nanometer to the micrometer scale can the properties of the product be set specifically during processing.

Conductive polymer composites
Gooneie has already overseen several projects. For instance, one was aimed at embedding carbon nanotubes (CNT) in a polyamide matrix. At the right dosage, CNTs can give a synthetic material electric conductivity - which makes this material interesting for the photovoltaics industry, for example. But what is the perfect amount of nanotubes to be mixed in? Should the tubes be the same length or would a mixture of lengths provide better results?

So far, it has been common for composite researchers to narrow down and solve the problem at hand with a series of experiments. Ali Gooneie, however, tackles the problem from a theoretical angle and uses his multi-dimensional simulation methods. The solution he came up with: A mixture of CNT with different lengths yields electrical conductivity the fastest. Ultimately, he succeeded in predicting the way, in which the nanotubes are arranged in the polymer - irrespective of the speed, with which the processing takes place.

At the same time the calculations were carried out, the researchers got their first experiment going: In a hot extruder at 245 degrees Celsius, they mixed nanotubes in various proportions into the polyamide matrix. It turned out that an admixture of 0.15 percent by weight yielded the best results in terms of electrical conductivity. Hand in hand with lab experiments, applied mathematics provided an elegant solution to the problem.

Gentle PET recycling
Simulation calculations can also achieve a lot in recycling projects. The Swiss collected almost 48,000 tons of PET bottles in 2018. From this, industry gained 35,000 tons of recycled PET. The synthetic material is highly sought-after as it is mechanically resilient, air and gas-tight, and can withstand high temperatures.

However, PET cannot be recycled an unlimited number of times. If the material is remelted too often, chemical reactions take place within the material: The molecules oxidize, cross-link and form lumps, and the material becomes viscous and translucent.

An additive called DOPO-PEPA could change all this. In fact, the material is a flame retardant developed by Empa researcher Sabyasachi Gaan, also in the Advance Fibers lab. Now the researchers want to explore whether it can also serve as a lubricant and preservative for PET recycling.

Gooneie began by estimating whether DOPO-PEPA can be mixed into PET at the intended temperature at all. Then he calculated how the pearl necklace of PET molecules would move in the melt, how the DOPO-PEPA molecules would squeeze between them, and when an equilibrium would appear in the mixture.

The result: An admixture of a few percent of DOPO-PEPA is already sufficient to allow recycled PET to flow well. Thanks to higher mathematics at Empa, recycling will soon run much more smoothly.

Research paper


Related Links
Swiss Federal Laboratories for Materials Science and Technology (EMPA)
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Fears rise China could weaponise rare earths in US tech war
Beijing (AFP) May 22, 2019
The US has hit China where it hurts by going after its telecom champion Huawei, but Beijing's control of the global supply of rare earths used in smartphones and electric cars gives it a powerful weapon in their escalating tech war. A seemingly routine visit by President Xi Jinping to a Chinese rare earths company this week is being widely read as an obvious threat that Beijing is standing ready for action. However, analysts say China appears apprehensive to take such a route just yet, possibly ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
NASA Prepares for Future Moon Exploration with International Undersea Crew

NASA Selects Studies for Future Space Communications and Services

NASA Testing Method to Grow Bigger Plants in Space

Oscar Avalos Dreams in Titanium

TECH SPACE
Michigan Company Helps Build NASA Moon Rocket, Accelerate Moon Missions

USC Students Win the Collegiate Space Race

ESA signs contracts for enhanced Ariane 6 composite upper stage technologies

Advanced rocket engine ready for space mission

TECH SPACE
Mars 'Actually the Only Planet' Humans Can Go to Escape Earth, Professor Claims

NASA Invites Public to Submit Names to Fly Aboard Next Mars Rover

After the Moon, people on Mars by 2033...or 2060

Exploring life on Mars in the Gobi desert

TECH SPACE
China develops new-generation rockets for upcoming missions

China's satellite navigation industry sees rapid development

China's Yuanwang-7 departs for space monitoring missions

China's tracking ship Yuanwang-2 starts new mission after retirement

TECH SPACE
Downstream Gateway: bringing space down to Earth

Aerospace Workforce Training - A National Mandate for the Future

Kleos Space appoints Ground Station Service Provider

SpaceX nears first launch of its Starlink satellites

TECH SPACE
Fears rise China could weaponise rare earths in US tech war

A new sensor for light, heat and touch

Small but Mighty: Mini Version of Extreme Environments Chamber Extends Planetary Science

Kilogram to be based on physical absolute instead of single, physical object

TECH SPACE
New method to find small exoplanets

Three exocomets discovered around the star Beta Pictoris

New insights about carbon and ice could clarify inner workings of Earth, other planets

NASA Team Teaches Algorithms to Identify Life

TECH SPACE
Neptune's moon Triton fosters rare icy union

Gas insulation could be protecting an ocean inside Pluto

NASA's New Horizons Team Publishes First Kuiper Belt Flyby Science Results

Brazilian scientists investigate dwarf planet's ring









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.