. 24/7 Space News .
TECH SPACE
A new sensor for light, heat and touch
by Staff Writers
Linkoping, Sweden (SPX) May 23, 2019

file illustration only

Inspired by the behaviour of natural skin, researchers at the Laboratory of Organic Electronics, Linkoping University, have developed a sensor that will be suitable for use with electronic skin. It can measure changes in body temperature, and react to both sunlight and warm touch.

Robotics, prostheses that react to touch, and health monitoring are three fields in which scientists globally are working to develop electronic skin. They want such skin to be flexible and to possess some form of sensitivity. Researchers at the Laboratory of Organic Electronics at Linkoping University have now taken steps towards such a system by combining several physical phenomena and materials. The result is a sensor that, similar to human skin, can sense temperature variation that originates from the touch of a warm object, as well as the heat from solar radiation.

"We have been inspired by nature and its methods of sensing heat and radiation", says Mina Shiran Chaharsoughi, doctoral student in the Organic Photonics and Nano-optics group at the Laboratory of Organic Electronics.

Together with colleagues she has developed a sensor that combines pyroelectric and thermoelectric effects with a nano-optical phenomenon.

A voltage arises in pyroelectric materials when they are heated or cooled. It is the change in temperature that gives a signal, which is rapid and strong, but that decays almost as rapidly.

In thermoelectric materials, in contrast, a voltage arises when the material has one cold and one hot side. The signal here arises slowly, and some time must pass before it can be measured. The heat may arise from a warm touch or from the sun; all that is required is that one side is colder than the other.

"We wanted to enjoy the best of both worlds, so we combined a pyroelectric polymer with a thermoelectric gel developed in a previous project by Dan Zhao, Simone Fabiano and other colleagues at the Laboratory of Organic Electronics. The combination gives a rapid and strong signal that lasts as long as the stimulus is present", says Magnus Jonsson, leader of the Organic Photonics and Nano-optics group.

Furthermore, it turned out that the two materials interact in a way that reinforces the signal.

The new sensor also uses another nano-optical entity known as plasmons.

"Plasmons arise when light interacts with nanoparticles of metals such as gold and silver. The incident light causes the electrons in the particles to oscillate in unison, which forms the plasmon. This phenomenon provides the nanostructures with extraordinary optical properties, such as high scattering and high absorption", Magnus Jonsson explains.

In previous work, he and his co-workers have shown that a gold electrode that has been perforated with nanoholes absorbs light efficiently with the aid of plasmons. The absorbed light is subsequently converted to heat. With such an electrode, a thin gold film with nanoholes, on the side that faces the sun, the sensor can also convert visible light rapidly to a stable signal.

As an added bonus, the sensor is also pressure-sensitive. "A signal arises when we press the sensor with a finger, but not when we subject it to the same pressure with a piece of plastic. It reacts to the heat of the hand", says Magnus Jonsson.

Research paper


Related Links
Linkoping University
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Louisiana-based Geocent's Advanced Aerospace Materials to Fly Aboard International Space Station
Metairie LA (SPX) May 16, 2019
Geocent, LLC, a national Information Technology and Engineering firm with its headquarters in Louisiana, was informed by NASA that its innovative materials for radiation shielding and thermal barrier coatings were chosen to fly aboard the International Space Station (ISS) to evaluate their potential applications for lunar habitation, long-term deep space missions such as Mars, and other unspecified defense applications. Geocent, with its partners Plasma Processes Inc, The University of Tennessee, ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Oscar Avalos Dreams in Titanium

Space plants project could be astronaut game changer

LightSail 2 set to launch next month

Robotics used to restore full power for the Space Station

TECH SPACE
Rocket Lab to launch rideshare mission for Spaceflight

SpaceX's Dragon Cargo capsule docks with Space Station

SpinLaunch Breaks Ground for New Test Facility at Spaceport America

Ariane 6 series production begins with first batch of 14 launchers

TECH SPACE
How the Sun pumps out water from Mars into space

NASA's MRO Completes 60,000 Trips Around Mars

New water cycle on Mars discovered

For InSight, dust cleanings will yield new science

TECH SPACE
China's Yuanwang-7 departs for space monitoring missions

China's tracking ship Yuanwang-2 starts new mission after retirement

China to build moon station in 'about 10 years'

China to enhance international space cooperation

TECH SPACE
Kleos Space appoints Ground Station Service Provider

SpaceX nears first launch of its Starlink satellites

Maxar Technologies to receive full insurance payout for WorldView-4 loss

New space race to bring satellite internet to the world

TECH SPACE
Louisiana-based Geocent's Advanced Aerospace Materials to Fly Aboard International Space Station

BAE Systems Radiation-hardened Electronics in Orbit a Total of 10,000 Years

Elkem's Silgrain Powering Space Exploration and Research

Physicists propose perfect material for lasers

TECH SPACE
Small, hardy planets can survive stellar end sequence

Gravitational forces in protoplanetary disks may push super-Earths close to their stars

Rare-Earth metals in the atmosphere of a glowing-hot exoplanet

Cosmic dust reveals new insights on the formation of solar system

TECH SPACE
NASA's New Horizons Team Publishes First Kuiper Belt Flyby Science Results

Brazilian scientists investigate dwarf planet's ring

Next-Generation NASA Instrument Advanced to Study the Atmospheres of Uranus and Neptune

Public Invited to Help Name Solar System's Largest Unnamed World









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.