. | . |
A new sensor for light, heat and touch by Staff Writers Linkoping, Sweden (SPX) May 23, 2019
Inspired by the behaviour of natural skin, researchers at the Laboratory of Organic Electronics, Linkoping University, have developed a sensor that will be suitable for use with electronic skin. It can measure changes in body temperature, and react to both sunlight and warm touch. Robotics, prostheses that react to touch, and health monitoring are three fields in which scientists globally are working to develop electronic skin. They want such skin to be flexible and to possess some form of sensitivity. Researchers at the Laboratory of Organic Electronics at Linkoping University have now taken steps towards such a system by combining several physical phenomena and materials. The result is a sensor that, similar to human skin, can sense temperature variation that originates from the touch of a warm object, as well as the heat from solar radiation. "We have been inspired by nature and its methods of sensing heat and radiation", says Mina Shiran Chaharsoughi, doctoral student in the Organic Photonics and Nano-optics group at the Laboratory of Organic Electronics. Together with colleagues she has developed a sensor that combines pyroelectric and thermoelectric effects with a nano-optical phenomenon. A voltage arises in pyroelectric materials when they are heated or cooled. It is the change in temperature that gives a signal, which is rapid and strong, but that decays almost as rapidly. In thermoelectric materials, in contrast, a voltage arises when the material has one cold and one hot side. The signal here arises slowly, and some time must pass before it can be measured. The heat may arise from a warm touch or from the sun; all that is required is that one side is colder than the other. "We wanted to enjoy the best of both worlds, so we combined a pyroelectric polymer with a thermoelectric gel developed in a previous project by Dan Zhao, Simone Fabiano and other colleagues at the Laboratory of Organic Electronics. The combination gives a rapid and strong signal that lasts as long as the stimulus is present", says Magnus Jonsson, leader of the Organic Photonics and Nano-optics group. Furthermore, it turned out that the two materials interact in a way that reinforces the signal. The new sensor also uses another nano-optical entity known as plasmons. "Plasmons arise when light interacts with nanoparticles of metals such as gold and silver. The incident light causes the electrons in the particles to oscillate in unison, which forms the plasmon. This phenomenon provides the nanostructures with extraordinary optical properties, such as high scattering and high absorption", Magnus Jonsson explains. In previous work, he and his co-workers have shown that a gold electrode that has been perforated with nanoholes absorbs light efficiently with the aid of plasmons. The absorbed light is subsequently converted to heat. With such an electrode, a thin gold film with nanoholes, on the side that faces the sun, the sensor can also convert visible light rapidly to a stable signal. As an added bonus, the sensor is also pressure-sensitive. "A signal arises when we press the sensor with a finger, but not when we subject it to the same pressure with a piece of plastic. It reacts to the heat of the hand", says Magnus Jonsson.
Louisiana-based Geocent's Advanced Aerospace Materials to Fly Aboard International Space Station Metairie LA (SPX) May 16, 2019 Geocent, LLC, a national Information Technology and Engineering firm with its headquarters in Louisiana, was informed by NASA that its innovative materials for radiation shielding and thermal barrier coatings were chosen to fly aboard the International Space Station (ISS) to evaluate their potential applications for lunar habitation, long-term deep space missions such as Mars, and other unspecified defense applications. Geocent, with its partners Plasma Processes Inc, The University of Tennessee, ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |