. 24/7 Space News .
EXO WORLDS
Giant planets could reach "maturity" much earlier than previously thought
by Staff Writers
Potsdam, Germany (SPX) Dec 06, 2021

Artist's impression of the exoplanet system around the Sun-like star V1298 Tau.

An international team of scientists has successfully measured the masses of the giant planets of the V1298 Tau system, which is just 20 million years old. For this result they have used radial velocity measurements from telescopes on La Palma, in southern Spain and on Tenerife, including the STELLA II telescope from the Leibniz Institute for Astrophysics Potsdam (AIP).

Masses for such young giant planets had not been obtained previously. The study now published in Nature Astronomy delivers the first evidence that these objects can reach their final size within their first millions of years of evolution.

The study reports the measurement of the masses of two giant planets that orbit the young solar-type star V1298 Tau,whose total lifetime is about 10 billion years. They were discovered in 2019 using data from NASA's Kepler space telescope, which allowed the measurement of their sizes, slightly smaller than Jupiter, and of their orbital periods, 24 and 40 days for V1298 Tau b and e, respectively.

"The characterization of very young planets is extraordinarily difficult," says the first author of the study Dr Alejandro Suarez Mascareno from the Instituto de Astrofisica de Canarias (IAC). "The parent stars have very high levels of activity and until very recently it was unthinkable to even try".

He adds: "Only thanks to detections made with space telescopes, combined with intense radial velocity campaigns from Earth-based observatories and the use of the most advanced analysis techniques, it was possible to begin to see what is happening in such early stages of the evolution of planetary systems".

In fact, for the new measurements of the planetary masses, it was necessary to separate the signals generated by these planets from the signal generated by the star's activity, which is almost ten times larger. At this point, the specialisation of STELLA (STELLar Activity) comes into play.

"With its large wavelength coverage from ultraviolet to infrared radiation at a high spectral resolution, STELLA can track the magnetic activity of a star," adds Professor Klaus Strassmeier, director of the research branch Cosmic Magnetic Fields at AIP and PI for STELLA.

The study shows that the masses and radii of the planets V1298 Tau b and c are surprisingly similar to those of the giant planets of the Solar System or in other old extrasolar systems. These measurements, which are the first to be obtained of such young giant planets, allow scientists to test current ideas about the formation of planetary systems.

"For many years, theoretical models have indicated that giant planets begin their evolution as bodies with a larger size, and that they later contract over hundreds of million or even billions of years," explains Dr Victor J. Sanchez Bejar, researcher at the IAC and co-author of the work. "We now know that they can actually reach a size similar to that of the planets in the solar system in a very short time," he notes.

The study of young systems gives researchers clues about what happened during the infancy of our solar system. "We still do not know if V1298 Tau and its planets are a normal case and whether their evolution is similar to that of most planets or if we are facing an exceptional case; if this were the normal scenario, it would mean that the evolution of planets like Jupiter and Saturn could have been very different from what we think," comments Dr Nicolas Lodieu, a researcher at the IAC, former PhD student at AIP and also a co-author of the work. The results of this work thus help to build a more solid idea of the early evolution of planetary systems like ours.

To achieve the measurement of these masses, the study has required a significant observational effort and the collaboration of multiple observatories and institutions from different countries. It was necessary to combine radial velocity measurements from various instruments such as the high-resolution HARPS-N ultrastable spectrograph at the Roque de los Muchachos Observatory's (ORM) Telescopio Nazionale Galileo (TNG); the CARMENES high resolution spectrograph at the Calar Alto observatory; the HERMES spectrograph on the Mercator telescope, also at the ORM; and the SES spectrograph at AIP's STELLA telescopes at the Teide Observatory. Observations taken from the Las Cumbres Observatory have been used to continuously monitor the variations of the star's activity.

Research Report: "Rapid contraction of giant planets orbiting the 20 million-years old star V1298 Tau"


Related Links
Leibniz Institute for Astrophysics Potsdam
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
TESS discovers a planet the size of Mars but with the makeup of Mercury
Boston MA (SPX) Dec 03, 2021
Ultra-short-period planets are small, compact worlds that whip around their stars at close range, completing an orbit - and a single, scorching year - in less than 24 hours. How these planets came to be in such extreme configurations is one of the continuing mysteries of exoplanetary science. Now, astronomers have discovered an ultra-short-period planet (USP) that is also super light. The planet is named GJ 367 b, and it orbits its star in just eight hours. The planet is about the size of Mars, an ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
NASA announces 10 latest astronaut trainees

NASA astronauts complete ISS spacewalk

Russia to send Japanese tycoon to ISS in return to space tourism

NASA selects companies to develop commercial destinations in space

EXO WORLDS
NASA awards Artemis contract for future SLS boosters

Galileo launch postponed

European space firm to build small, reusable launcher

Rocket Lab readies Electron for lift-off in fastest launch turnaround yet

EXO WORLDS
ESA's Mars Express unravels mystery of martian moon using 'fake' flybys

Sols 3314-3315: Bountiful, Beautiful Boulders!

Brief presence of water in Arabia Terra on Mars

Eyes on the Sky

EXO WORLDS
China to livestream first space class from Tiangong space station

Tianzhou cargo craft to help advance science

Rocket industrial park put into operation in Wuhan

Chinese astronauts' EVAs to help extend mechanical arm

EXO WORLDS
Exploring the heart of space weather with the Geospace Dynamics Constellation

Ben Griffin explains how Oneweb's LEO Constellation will change the IFC Market

ESA moves forward with your ideas for 11 pioneering missions

Growing trend shows demand for maintenance students at commercial space firms

EXO WORLDS
NASA and industry embrace laser communications

Researchers develop novel 3D printing technique to engineer biofilms

Light-powered soft robots could suck up oil spills

New 'Halo' game debuts as Xbox turns 20

EXO WORLDS
Discovery Alert: 172 Possible Planets? A New Roadmap to Distant Worlds

An eight-hour year

Giant planets could reach "maturity" much earlier than previously thought

TESS discovers a planet the size of Mars but with the makeup of Mercury

EXO WORLDS
Are Water Plumes Spraying from Europa

Science results offer first 3D view of Jupiter's atmosphere

Juno peers deep into Jupiter's colorful belts and zones

Scientists find strange black 'superionic ice' that could exist inside other planets









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.