. | . |
An eight-hour year by Staff Writers Berlin, Germany (SPX) Dec 02, 2021
As far as extrasolar planets go, 'GJ 367 b' is a featherweight. With half the mass of Earth, the newly discovered planet is one of the lightest among the nearly 5000 exoplanets known today. It takes the extrasolar planet approximately eight hours to orbit its parent star. With a diameter of just over 9000 kilometres, GJ 367 b is slightly larger than Mars. The planetary system is located just under 31 light years from Earth and is thus ideal for further investigation. The discovery demonstrates that it is possible to precisely determine the properties of even the smallest, least massive exoplanets. Such studies provide a key to understanding how terrestrial planets form and evolve. An international group of 78 researchers led by Kristine W. F. Lam and Szilard Csizmadia from the German Aerospace Center (Deutsches Zentrum fur Luft- und Ruamfahrt; DLR) Institute of Planetary Research report on the results of their studies in the scientific journal Science. With an orbital period of only one-third of an Earth day, GJ 367 b is a fast mover. "From the precise determination of its radius and mass, GJ 367b is classified as a rocky planet," reports Kristine Lam. "It seems to have similarities to Mercury. This places it among the sub-Earth sized terrestrial planets and brings research one step forward in the search for a 'second Earth'."
More precise exoplanet trackers possible
Origin of the small fast-moving planets still unknown "By measuring the precise fundamental properties of the USP planet, we can get a glimpse of the system's formation and evolution history." Following the discovery of this planet using TESS and the transit method, the spectrum of its star was then studied from the ground using the radial velocity method. The mass was determined using the HARPS instrument on the European Southern Observatory's 3.6m Telescope. With the meticulous study and combination of different evaluation methods, the radius and mass of the planet were precisely determined: its radius is 72 percent that of Earth's, and its mass 55 percent that of Earth's.
Highest precision for radius and mass "These properties are similar to those of Mercury, with its disproportionately large iron and nickel core that differentiates it from other terrestrial bodies in the Solar System." However, the planet's proximity to its star means it is exposed to extremely high levels of radiation, more than 500 times stronger than what the Earth experiences. The surface temperature could reach up to 1500 degrees Celsius - a temperature at which all rocks and metals would be melted. Therefore, GJ 367 b cannot be considered a 'second Earth'.
Parent star is a 'red dwarf'
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |