24/7 Space News
EARLY EARTH
York U research sheds light on earliest days of Earth's formation
Artistic view of Earth's interior during mantle solidification in the first hundreds of millions of years of Earth's history. Gravitational segregation of dense, iron-rich magma (in orange) likely formed a basal magma ocean atop the core, that can explain the present-day structure of the lower mantle.
York U research sheds light on earliest days of Earth's formation
by Emina Gamulin for York U
Toronto, Canada (SPX) Mar 30, 2025

New research led by a York University professor sheds light on the earliest days of the Earth's formation and potentially calls into question some earlier assumptions in planetary science about the early years of rocky planets. Establishing a direct link between the Earth's interior dynamics occurring within the first 100 million years of its history and its present-day structure, the work is one of the first in the field to combine fluid mechanics with chemistry to better understand the Earth's early evolution.

"This study is the first to demonstrate, using a physical model, that the first-order features of Earth's lower mantle structure were established four billion years ago, very soon after the planet came into existence," says lead author Faculty of Science Assistant Professor Charles-Edouard Boukare in the Department of Physics and Astronomy at York.

The mantle is the rocky envelopment that surrounds the iron core of rocky planets. The structure and dynamics of the Earth's lower mantle play a major role throughout Earth's history as it dictates, among others, the cooling of the Earth's core where the Earth's magnetic field is generated.

Boukare originally from France, worked with research colleagues from Paris on the paper, Solidification of Earth's mantle led inevitably to a basal magma ocean, published in Nature.

Boukare says that while seismology, geodynamics, and petrology have helped answer many questions about the present-day thermochemical structure of Earth's interior, a key question remained: how old are these structures, and how did they form? Trying to answer this, he says, is much like looking at a person in the form of an adult versus a child and understanding how the energetic conditions will not be the same.

"If you take kids, sometimes they do crazy things because they have a lot of energy, like planets when they are young. When we get older, we don't do as many crazy things, because our activity or level of energy decreases. So, the dynamic is really different, but there are some things that we do when we are really young that might affect our entire life," he says "It's the same thing for planets. There are some aspects of the very early evolution of planets that we can actually see in their structure today."

To better understand old planets, we must first learn how young planets behave.

Since simulations of the Earth's mantle focus mostly on present-day solid-state conditions, Boukare had to develop a novel model to explore the early days of Earth when the mantle was much hotter and substantially molten, work that he has been doing since his PhD.

Boukare's model is based on a multiphase flow approach that allows for capturing the dynamics of magma solidification at a planetary scale. Using his model, he studied how the early mantle transitioned from a molten to a solid state. Boukare and his team were surprised to discover that most of the crystals formed at low pressure, which he says creates a very different chemical signature than what would be produced at depth in a high-pressure environment. This challenges the prevailing assumptions in planetary sciences in how rocky planets solidify.

"Until now, we assumed the geochemistry of the lower mantle was probably governed by high-pressure chemical reactions, and now it seems that we need to account also for their low-pressure counterparts."

Boukare says this work could also help predict the behaviour of other planets down the line.

"If we know some kind of starting conditions, and we know the main processes of planetary evolution, we can predict how planets will evolve."

Research Report:Solidification of Earth's mantle led inevitably to a basal magma ocean

Related Links
York University
Explore The Early Earth at TerraDaily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
EARLY EARTH
How survivors spanned the globe after Earth's biggest mass extinction
Stanford CA (SPX) Mar 30, 2025
Scientists don't call it the "Great Dying" for nothing. About 252 million years ago, upward of 80% of all marine species vanished during the end-Permian mass extinction - the most extreme event of its kind in Earth's history. What followed was a mysterious, multimillion-year span that could be called the "Great Dulling," when marine animal communities looked remarkably alike all over the planet, from the equator to the poles. Researchers have long sought an explanat ... read more

EARLY EARTH
Safely back on Earth, once-stranded US astronauts ready to fly again

Delft and Brown researchers unveil ultrathin sails for laser propulsion in space

ISS National Lab unveils startup accelerator to drive innovation in orbit

SpaceX to launch private astronauts on first crewed polar orbit

EARLY EARTH
ULA Vulcan earns green light for national security launches

The Sky's Not the Limit for NASA's Next-Gen Landing Navigation Tech

Spectrum rocket completes short-duration test flight

TUM spin-off rocket completes maiden launch from Western Europe

EARLY EARTH
Martian dust may endanger astronaut health during surface missions

A step closer to Martian survival as lichens endure harsh red planet conditions

ExoMars rover to land on Mars aboard European-built platform

Visiting Mars on the Way to the Outer Solar System

EARLY EARTH
Space station advances muscle and semiconductor science

China highlights major strides in moon research and exploration

China's Galactic Energy expands Yunyao satellite network with successful launch

Shenzhou XIX astronauts complete third spacewalk outside Tiangong

EARLY EARTH
Aventura launches first fund with $9.5M SpaceX investment vehicle

MDA Space moves to acquire SatixFy in digital satellite expansion

How VIN Decoding Became the Silent Ally of Smart Used Car Buyers

Amazon to launch first batch of Starlink-rival satellites

EARLY EARTH
Biomass satellite prepped for launch fuel load

Radiation belt wisp mapped inside anomaly by Macao satellite

Bacterial bio-repair method strengthens lunar construction bricks

NASA cloud tech empowers private mission planners

EARLY EARTH
How calcium may have guided early molecular directionality

Four Small Worlds Discovered Orbiting Nearby Star

Incredible Journey of Pristine Meteorite Reveals Survival Secrets

Fluorescent caves could explain how life persists in extraterrestrial environments

EARLY EARTH
20 years of Hubble data reveals evolving weather patterns on Uranus

NASA's Hubble Telescope May Have Uncovered a Triple System in the Kuiper Belt

NASA's Europa Clipper Leverages Mars for Critical Gravity Assist

Oort cloud resembles a galaxy, new study finds

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.