24/7 Space News
Using eclipses to calculate the transparency of Saturn's rings
File image of Saturn and her rings by Cassini at 16 degrees above.
Using eclipses to calculate the transparency of Saturn's rings
by Staff Writers
Lancaster UK (SPX) Nov 16, 2023

A Lancaster University PhD student has measured the optical depth of Saturn's rings using a new method based on how much sunlight reached the Cassini spacecraft while it was in the shadow of the rings.

The optical depth is connected to the transparency of an object, and it shows how far light can travel through that object before it gets absorbed or scattered.

The research, led by Lancaster University in collaboration with the Swedish Institute of Space Physics, is published in the Monthly Notices of the Royal Astronomical Society.

The NASA-ESA Cassini spacecraft was launched in 1997 and reached Saturn in 2004, carrying out the most extensive survey of the planet and its moons to date. The mission ended in 2017 when Cassini plunged into the Saturnian atmosphere, after diving 22 times between the planet and its rings.

Lancaster University PhD student George Xystouris, under the supervision of Dr Chris Arridge, analysed historic data from the Langmuir Probe on board Cassini, an instrument that was measuring the cold plasma, i.e., low energy ions and electrons, in the magnetosphere of Saturn.

For their study they focused on solar eclipses of the spacecraft: periods where Cassini was in the shadow of Saturn or the main rings. During each eclipse, the Langmuir Probe recorded dramatic changes in the data.

George said: "As the probe is metallic, whenever it is sunlit, the sunlight can give enough energy to the probe to release electrons. This is the photoelectric effect, and the electrons that are released are so-called 'photoelectrons. They can create problems though, as they have the same properties as the electrons in the cold plasma around Saturn and there is not an easy way to separate the two."

"Focusing on the data variations we realised that they were connected with how much sunlight each ring would allow to pass. Eventually, using the properties of the material that the Langmuir Probe was made of, and how bright the Sun was in Saturn's neighbourhood, we managed to calculate the change in the photoelectrons number for each ring, and calculate Saturn's rings optical depth.

"This was a novel and exciting result! We used an instrument that is mainly used for plasma measurements to measure a planetary feature, which is a unique use of the Langmuir Probe, and our results agreed with studies that used high-resolution imagers to measure the transparency of the rings."

?he main rings, which extend up to 140,000 km from the planet, but have a maximum thickness of only 1km, are to disappear from view from Earth by 2025. In that year the rings will be tilted edge-on to Earth, making it almost impossible to view them. They will tilt back towards Earth during the next phase of Saturn's 29-year orbit and will continue to become more visible and brighter until 2032.

Professor Mike Edmunds, the President of the Royal Astronomical Society, added: "It is always good to see a postgraduate student involved in using space probe instrumentation in an unusual and inventive way. Innovation of this kind is just what is needed in astronomical research - and an approach which many former students who are in a variety of careers are applying to help address the world's problems".

Research Report:Estimating the optical depth of Saturn's main rings using the Cassini Langmuir Probe

Related Links
Lancaster University
Explore The Ring World of Saturn and her moons
Jupiter and its Moons
The million outer planets of a star called Sol
News Flash at Mercury

Subscribe Free To Our Daily Newsletters

The following news reports may link to other Space Media Network websites.
Dragonfly tunnel visions
Washington DC (SPX) Oct 24, 2023
With its dense atmosphere and low gravity, Saturn's moon Titan is a great place to fly. But well before NASA's Dragonfly rotorcraft lander soars through Titan's skies, researchers on Earth - led by the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland - are making sure their designs and models for the nuclear-powered, car-sized drone will work in a truly unique environment. Dragonfly, NASA's only mission to the surface of another ocean world, is designed to investigate the c ... read more

NASA awards $2.3 million to study growing food in lunar dust

Earth bacteria could make lunar soil more habitable for plants

GreenOnyx's Wanna Greens Makes Space Debut Aboard SpaceX CRS-29 Mission

Big bang: Dutch firm eyes space baby

Heat Shield demo passes the test dubbed 'Just flawless'

UK Space Agency backs Orbit Fab's innovative refueling interface, GRASP

Starship Test Flies Higher: SpaceX Marks Progress Despite Late Test Incident

US 'strongly condemns' N. Korean space launch

NASA uses two worlds to test future Mars helicopter designs

California lawmakers ask NASA not to cut Mars budget

Spacecraft fall silent as Mars disappears behind the Sun

The Long Wait

China's BeiDou and Fengyun Satellites Elevate Global Weather Forecasting Capabilities

New scientific experimental samples from China's space station return to Earth

Shenzhou XVI crew return after 'very cool journey'

Chinese astronauts return to Earth with fruitful experimental results

SpaceX launches more Starlink satellites from Cape Canaveral

Instruments led by IRF selected for ESA potential future mission to either Mars or Earth's Orbit

Maxar hands over JUPITER 3, to EchoStar

Maritime Launch reports non-brokered private placement of convertible debentures

ReOrbit's Report Highlights Software-First Satellites as Key Growth Drivers in Space Industry

Climate conspiracy theories flourish ahead of COP28

NASA's Deep Space Optical Comm Demo Sends, Receives First Data

Rice researcher scans tropical forest with mixed-reality device

Deformable Mirrors in Space: Key Technology to Directly Image Earth Twins

Hubble measures the size of the nearest transiting Earth-sized planet

NASA data reveals possible reason some exoplanets are shrinking

Webb detects water vapor, sulfur dioxide and sand clouds in the atmosphere of a nearby exoplanet

Juice burns hard towards first-ever Earth-Moon flyby

Fall into an ice giant's atmosphere

Juno finds Jupiter's winds penetrate in cylindrical layers

Salts and organics observed on Ganymede's surface by June

Subscribe Free To Our Daily Newsletters

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.