24/7 Space News
EXO WORLDS
NASA data reveals possible reason some exoplanets are shrinking
This infographic details the main types of exoplanets. Scientists have been working to better understand the "size gap," or conspicuous absence, of planets that fall between super-Earths and sub-Neptunes.
NASA data reveals possible reason some exoplanets are shrinking
by Chelsea Gohd for JPL News
Pasadena CA (JPL) Nov 16, 2023

Some exoplanets seem to be losing their atmospheres and shrinking. In a new study using NASA's retired Kepler Space Telescope, astronomers find evidence of a possible cause: The cores of these planets are pushing away their atmospheres from the inside out.

Exoplanets (planets outside our solar system) come in a variety of sizes, from small, rocky planets to colossal gas giants. In the middle lie rocky super-Earths and larger sub-Neptunes with puffy atmospheres. But there's a conspicuous absence - a "size gap" - of planets that fall between 1.5 to 2 times the size of Earth (or in between super-Earths and sub-Neptunes) that scientists have been working to better understand.

"Scientists have now confirmed the detection of over 5,000 exoplanets, but there are fewer planets than expected with a diameter between 1.5 and 2 times that of Earth," said Caltech/IPAC research scientist Jessie Christiansen, science lead for the NASA Exoplanet Archive and lead author of the new study in The Astronomical Journal. "Exoplanet scientists have enough data now to say that this gap is not a fluke. There's something going on that impedes planets from reaching and/or staying at this size."

Researchers think that this gap could be explained by certain sub-Neptunes losing their atmospheres over time. This loss would happen if the planet doesn't have enough mass, and therefore gravitational force, to hold onto its atmosphere. So sub-Neptunes that aren't massive enough would shrink to about the size of super-Earths, leaving the gap between the two sizes of planets.

But exactly how these planets are losing their atmospheres has remained a mystery. Scientists have settled on two likely mechanisms: One is called core-powered mass loss; and the other, photoevaporation. The study has uncovered new evidence supporting the first.

Solving the Mystery
Core-powered mass loss occurs when radiation emitted from a planet's hot core pushes the atmosphere away from the planet over time, "and that radiation is pushing on the atmosphere from underneath," Christiansen said.

The other leading explanation for the planetary gap, photoevaporation, happens when a planet's atmosphere is essentially blown away by the hot radiation of its host star. In this scenario, "the high-energy radiation from the star is acting like a hair dryer on an ice cube," she said.

While photoevaporation is thought to occur during a planet's first 100 million years, core-powered mass loss is thought to happen much later - closer to 1 billion years into a planet's life. But with either mechanism, "if you don't have enough mass, you can't hold on, and you lose your atmosphere and shrink down," Christiansen added.

For this study, Chistiansen and her co-authors used data from NASA's K2, an extended mission of the Kepler Space Telescope, to look at the star clusters Praesepe and Hyades, which are 600 million to 800 million years old. Because planets are generally thought to be the same age as their host star, the sub-Neptunes in this system would be past the age where photoevaporation could have taken place but not old enough to have experienced core-powered mass loss.

So if the team saw that there were a lot of sub-Neptunes in Praesepe and Hyades (as compared to older stars in other clusters), they could conclude that photoevaporation hadn't taken place. In that case, core-powered mass loss would be the most likely explanation of what happens to less massive sub-Neptunes over time.

In observing Praesepe and Hyades, the researchers found that nearly 100% of stars in these clusters still have a sub-Neptune planet or planet candidate in their orbit. Judging from the size of these planets, the researchers think they have retained their atmospheres.

This differs from the other, older stars observed by K2 (stars more than 800 million years old), only 25% of which have orbiting sub-Neptunes. The older age of these stars is closer to the timeframe in which core-powered mass loss is thought to take place.

From these observations, the team concluded that photoevaporation could not have taken place in Praesepe and Hyades. If it had, it would have occurred hundreds of millions of years earlier, and these planets would have little, if any, atmosphere left. This leaves core-powered mass loss as the leading explanation for what likely happens to the atmospheres of these planets.

Christiansen's team spent more than five years building the planet candidate catalog necessary for the study. But the research is far from complete, she said, and it is possible that the current understanding of photoevaporation and/or core-powered mass loss could evolve. The findings will likely be put to the test by future studies before anyone can declare the mystery of this planetary gap solved once and for all.

This study was conducted using the NASA Exoplanet Archive, which is operated by Caltech in Pasadena under contract with NASA as part of the Exoplanet Exploration Program, which is located at NASA's Jet Propulsion Laboratory in Southern California. JPL is a division of Caltech.

Related Links
Kepler at NASA
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
EXO WORLDS
Extended habitability of exoplanets due to subglacial water
Jerusalem, Israel (SPX) Nov 10, 2023
Professor Amri Wandel, from Hebrew University of Jerusalem, has unveiled research that promises to redefine our comprehension of habitable exoplanets. In a recent study published in the Astronomical Journal, Professor Wandel introduces the concept of subglacial liquid water as a pivotal element in broadening the boundaries of the conventional Habitable Zone. The classical Habitable Zone, often colloquially referred to as the "Goldilocks Zone," typically defines the region around a star where condi ... read more

EXO WORLDS
NASA awards $2.3 million to study growing food in lunar dust

Earth bacteria could make lunar soil more habitable for plants

GreenOnyx's Wanna Greens Makes Space Debut Aboard SpaceX CRS-29 Mission

Big bang: Dutch firm eyes space baby

EXO WORLDS
Heat Shield demo passes the test dubbed 'Just flawless'

UK Space Agency backs Orbit Fab's innovative refueling interface, GRASP

Starship Test Flies Higher: SpaceX Marks Progress Despite Late Test Incident

US 'strongly condemns' N. Korean space launch

EXO WORLDS
NASA uses two worlds to test future Mars helicopter designs

California lawmakers ask NASA not to cut Mars budget

Spacecraft fall silent as Mars disappears behind the Sun

The Long Wait

EXO WORLDS
China's BeiDou and Fengyun Satellites Elevate Global Weather Forecasting Capabilities

New scientific experimental samples from China's space station return to Earth

Shenzhou XVI crew return after 'very cool journey'

Chinese astronauts return to Earth with fruitful experimental results

EXO WORLDS
SpaceX launches more Starlink satellites from Cape Canaveral

Instruments led by IRF selected for ESA potential future mission to either Mars or Earth's Orbit

Maxar hands over JUPITER 3, to EchoStar

Maritime Launch reports non-brokered private placement of convertible debentures

EXO WORLDS
ReOrbit's Report Highlights Software-First Satellites as Key Growth Drivers in Space Industry

Climate conspiracy theories flourish ahead of COP28

NASA's Deep Space Optical Comm Demo Sends, Receives First Data

Rice researcher scans tropical forest with mixed-reality device

EXO WORLDS
Deformable Mirrors in Space: Key Technology to Directly Image Earth Twins

Hubble measures the size of the nearest transiting Earth-sized planet

NASA data reveals possible reason some exoplanets are shrinking

Webb detects water vapor, sulfur dioxide and sand clouds in the atmosphere of a nearby exoplanet

EXO WORLDS
Juice burns hard towards first-ever Earth-Moon flyby

Fall into an ice giant's atmosphere

Juno finds Jupiter's winds penetrate in cylindrical layers

Salts and organics observed on Ganymede's surface by June

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.