24/7 Space News
OUTER PLANETS
Juno finds Jupiter's winds penetrate in cylindrical layers
NASA's Juno captured this view of Jupiter during the mission's 54th close flyby of the giant planet on Sept. 7. The image was made with raw data from the JunoCam instrument that was processed to enhance details in cloud features and colors. Credit: Image data: NASA/JPL-Caltech/SwRI/MSSS Image processing by Tanya Oleksuik
Reuters Events SMR and Advanced Reactor 2025
Juno finds Jupiter's winds penetrate in cylindrical layers
by Staff Writers
Pasadena CA (JPL) Nov 10, 2023

Gravity data collected by NASA's Juno mission indicates Jupiter's atmospheric winds penetrate the planet in a cylindrical manner, parallel to its spin axis. A paper on the findings was recently published in the journal Nature Astronomy.

The violent nature of Jupiter's roiling atmosphere has long been a source of fascination for astronomers and planetary scientists, and Juno has had a ringside seat to the goings-on since it entered orbit in 2016. During each of the spacecraft's 55 to date, a suite of science instruments has peered below Jupiter's turbulent cloud deck to uncover how the gas giant works from the inside out.

One way the Juno mission learns about the planet's interior is via radio science. Using NASA's Deep Space Network antennas, scientists track the spacecraft's radio signal as Juno flies past Jupiter at speeds near 130,000 mph (209,000 kph), measuring tiny changes in its velocity - as small as 0.01 millimeter per second. Those changes are caused by variations in the planet's gravity field, and by measuring them, the mission can essentially see into Jupiter's atmosphere.

Such measurements have led to numerous discoveries, including the existence of a dilute core deep within Jupiter and the depth of the planet's zones and belts, which extend from the cloud tops down approximately 1,860 miles (3,000 kilometers).

Doing the Math
To determine the location and cylindrical nature of the winds, the study's authors applied a mathematical technique that models gravitational variations and surface elevations of rocky planets like Earth. At Jupiter, the technique can be used to accurately map winds at depth. Using the high-precision Juno data, the authors were able to generate a four-fold increase in the resolution over previous models created with data from NASA's trailblazing Jovian explorers Voyager and Galileo.

"We applied a constraining technique developed for sparse data sets on terrestrial planets to process the Juno data," said Ryan Park, a Juno scientist and lead of the mission's gravity science investigation from NASA's Jet Propulsion Laboratory in Southern California. "This is the first time such a technique has been applied to an outer planet."

The measurements of the gravity field matched a two-decade-old model that determined Jupiter's powerful east-west zonal flows extend from the cloud-level white and red zones and belts inward. But the measurements also revealed that rather than extending in every direction like a radiating sphere, the zonal flows go inward, cylindrically, and are oriented along the direction of Jupiter's rotation axis. How Jupiter's deep atmospheric winds are structured has been in debated since the 1970s, and the Juno mission has now settled the debate.

"All 40 gravity coefficients measured by Juno matched our previous calculations of what we expect the gravity field to be if the winds penetrate inward on cylinders," said Yohai Kaspi of the Weizmann Institute of Science in Israel, the study's lead author and a Juno co-investigator. "When we realized all 40 numbers exactly match our calculations, it felt like winning the lottery."

Along with bettering the current understanding of Jupiter's internal structure and origin, the new gravity model application could be used to gain more insight into other planetary atmospheres.

Juno is currently in an extended mission. Along with flybys of Jupiter, the solar-powered spacecraft has completed a series of flybys of the planet's icy moons Ganymede and Europa and is in the midst of several close flybys of Io. The Dec. 30 flyby of Io will be the closest to date, coming within about 930 miles (1,500 kilometers) of its volcano-festooned surface.

"As Juno's journey progresses, we're achieving scientific outcomes that truly define a new Jupiter and that likely are relevant for all giant planets, both within our solar system and beyond," said Scott Bolton, the principal investigator of the Juno mission at the Southwest Research Institute in San Antonio. "The resolution of the newly determined gravity field is remarkably similar to the accuracy we estimated 20 years ago. It is great to see such agreement between our prediction and our results."

Research Report:Observational evidence for cylindrically oriented zonal flows on Jupiter

Related Links
Juno
The million outer planets of a star called Sol

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
OUTER PLANETS
New jet stream discovered in Jupiter's upper atmosphere
Bilbo, Spain (SPX) Oct 31, 2023
High-speed jet streams are a common feature in the atmospheres of many planets. On the Earth, jet streams form at various latitudes and meander around the planet, changing latitude and reaching speeds approaching 400 km/h at an altitude of over 10 km above the surface. On the giant planets Jupiter and Saturn, jet streams are one of the main features of the atmosphere; they are perfectly aligned with the parallels, and are known as zonal jets. On Jupiter these jets alternate in direction at different lat ... read more

OUTER PLANETS
SpaceX Dragon docks with International Space Station carrying new gear

NSF funds annual solicitation seeking physical science research leveraging the ISS National Lab

GreenOnyx's Wanna Greens Makes Space Debut Aboard SpaceX CRS-29 Mission

Cosmic currents: Preserving water quality for astronauts during space exploration

OUTER PLANETS
SpaceX 'Starship' launch postponed until Saturday

Southern Launch to host HyImpulse's Pioneering SR75 launch in South Australia

Hypergolic rocket engine with advanced throttling tested by Sierra Space

SpaceX hopes for second Starship flight test next week

OUTER PLANETS
Here Comes the Sun: Perseverance Readies for Solar Conjunction

NASA's Mars Missions Persist Through Solar Conjunction

The Long Wait

A green glow in the Martian night

OUTER PLANETS
China's BeiDou and Fengyun Satellites Elevate Global Weather Forecasting Capabilities

New scientific experimental samples from China's space station return to Earth

Shenzhou XVI crew return after 'very cool journey'

Chinese astronauts return to Earth with fruitful experimental results

OUTER PLANETS
Amazon's Project Kuiper completes successful tests of broadband connectivity

ESA Embracing Commercial Space Stations with Airbus and Voyager Space Partnership

Spire Global launches innovative constellation management platform

A third pair of SES' O3b mPower satellites launches from Cape Canaveral

OUTER PLANETS
ReOrbit's Report Highlights Software-First Satellites as Key Growth Drivers in Space Industry

ILLUMA-T launches to the International Space Station

D-Orbit Welcomes Marubeni Corporation as Lead Investor in Series C Funding

Airbus Introduces "Detumbler" Device to Address Satellite Tumbling in Low Earth Orbit

OUTER PLANETS
Extended habitability of exoplanets due to subglacial water

An ammonia trail to exoplanets

Bouncing comets could deliver building blocks for life to exoplanets

Webb detects water vapor, sulfur dioxide and sand clouds in the atmosphere of a nearby exoplanet

OUTER PLANETS
Fall into an ice giant's atmosphere

Juno finds Jupiter's winds penetrate in cylindrical layers

Salts and organics observed on Ganymede's surface by June

New jet stream discovered in Jupiter's upper atmosphere

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.