. 24/7 Space News .
TECH SPACE
UCLA engineers create single-step, all-in-one 3D printing method to make robotic materials
by Staff Writers
Los Angeles CA (SPX) Jun 21, 2022

A 3D-printed "meta-bot" developed by UCLA engineers is capable of propulsion, movement, sensing and decision-making. It is manufactured all at once by a new type of 3D printing process for engineered active materials with multiple functions (also known as metamaterials).

A team of UCLA engineers and their colleagues have developed a new design strategy and 3D printing technique to build robots in one single step.

A study that outlined the advance, along with the construction and demonstration of an assortment of tiny robots that walk, maneuver and jump, was published in Science.

The breakthrough enabled the entire mechanical and electronic systems needed to operate a robot to be manufactured all at once by a new type of 3D printing process for engineered active materials with multiple functions (also known as metamaterials). Once 3D printed, a "meta-bot" will be capable of propulsion, movement, sensing and decision-making.

The printed metamaterials consist of an internal network of sensory, moving and structural elements and can move by themselves following programmed commands. With the internal network of moving and sensing already in place, the only external component needed is a small battery to power the robot.

"We envision that this design and printing methodology of smart robotic materials will help realize a class of autonomous materials that could replace the current complex assembly process for making a robot," said the study's principal investigator Xiaoyu (Rayne) Zheng, an associate professor of civil and environmental engineering, and of mechanical and aerospace engineering at the UCLA Samueli School of Engineering.

"With complex motions, multiple modes of sensing and programmable decision-making abilities all tightly integrated, it's similar to a biological system with the nerves, bones and tendons working in tandem to execute controlled motions."

The team demonstrated the integration with an on-board battery and controller for the fully autonomous operation of the 3D printed robots - each at the size of a finger nail. According to Zheng, who is also a member of the California NanoSystems Institute at UCLA, the methodology could lead to new designs for biomedical robots, such as self-steering endoscopes or tiny swimming robots, which can emit ultrasounds and navigate themselves near blood vessels to deliver drug doses at specific target sites inside the body.

These "meta-bots" can also explore hazardous environments. In a collapsed building, for example, a swarm of such tiny robots armed with integrated sensing parts could quickly access confined spaces, assess threat levels and help rescue efforts by finding people trapped in the rubble.

Most robots, no matter their size, are typically built in a series of complex manufacturing steps that integrate the limbs, electronic and active components. The process results in heavier weights, bulkier volumes and reduced force output compared to robots that could be built using this new method.

The key in the UCLA-led, all-in-one method is the design and printing of piezoelectric metamaterials - a class of intricate lattice materials that can change shape and move in response to an electric field or create electrical charge as a result of physical forces.

The use of active materials that can translate electricity to motions is not new. However, these materials generally have limits in their range of motion and distance of travel. They also need to be connected to gearbox-like transmission systems in order to achieve desired motions.

By contrast, the UCLA-developed robotic materials - each the size of a penny - are composed of intricate piezoelectric and structural elements that are designed to bend, flex, twist, rotate, expand or contract at high speeds.

The team also presented a methodology to design these robotic materials so users could make their own models and print the materials into a robot directly.

"This allows actuating elements to be arranged precisely throughout the robot for fast, complex and extended movements on various types of terrain," said the study's lead author Huachen Cui, a UCLA postdoctoral scholar in Zheng's Additive Manufacturing and Metamaterials Laboratory.

"With the two-way piezoelectric effect, the robotic materials can also self-sense their contortions, detect obstacles via echoes and ultrasound emissions, as well as respond to external stimuli through a feedback control loop that determines how the robots move, how fast they move and toward which target they move."

Using the technique, the team built and demonstrated three "meta-bots" with different capabilities. One robot can navigate around S-shaped corners and randomly placed obstacles, another can escape in response to a contact impact, while the third robot could walk over rough terrain and even make small jumps.

Other UCLA authors of the study are graduate students Desheng Yao, Ryan Hensleigh, Zhenpeng Xu and Haotian Lu; postdoctoral scholar Ariel Calderon; development engineering associate Zhen Wang. Additional authors are Sheyda Davaria, a research associate at Virginia Tech; Patrick Mercier, an associate professor of electrical and computer engineering at UC San Diego; and Pablo Tarazaga, a professor of mechanical engineering at Texas A and M University.

The research was supported by a Young Faculty Award and a Director's Fellowship Award from the U.S. Defense Advanced Research Projects Agency (DARPA), with additional funding from the U.S. Office of Naval Research, the Air Force Office of Scientific Research and the National Science Foundation.

The advance incorporates 3D printing techniques previously developed by Zheng and Hensleigh while both were researchers at Virginia Tech, which holds the patent. The researchers plan to file an additional patent through the UCLA Technology Development Group for the new methodology developed at UCLA.

Research Report:Design and printing of proprioceptive three-dimensional architected robotic metamaterials


Related Links
UCLA Samueli School Of Engineering
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
How concrete 3D printing saves material and CO2
Graz, Austria (SPX) May 27, 2022
Concrete is the most widely used building material in the world. It can be used in many ways, can be produced locally and is very durable. Its environmental performance, on the other hand, is the subject of critical debate. In particular, the production of the integral concrete component cement emits a lot of CO2. "If we want to make building with concrete more sustainable and climate-friendly, we have to work on new concrete formulations and at the same time use concrete in a more targeted and sm ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Sidus Space working with NASA team for Extravehicular Activity Services Contract

Sierra Space to train astronauts at Kennedy Space Center for Orbital Reef

Left in the dust: The first golden age of citizen travel to outer space

Women in space analogues demonstrate more sustainable leadership

TECH SPACE
NASA fully loads Artemis 1 rocket with fuel in successful 'wet' rehearsal

Vega-C set for inaugural launch

Astra rocket fails to deliver 2 small satellites after launch, NASA says

FAA requires SpaceX to make environmental changes to Starbase in Texas

TECH SPACE
Sols 3503-3504: And We're Back

NASA, Partners establish new research group for Mars Sample Return Program

How Perseverance averts collisions and zaps

The Aonia Terra region of Mars in colour

TECH SPACE
China's deep space exploration laboratory starts operation

Shenzhou XIV taikonauts to conduct 24 medical experiments in space

Shenzhou XIV astronauts transporting supplies into space station

Three Chinese astronauts arrive at space station

TECH SPACE
Airbus built MEASAT-3d communications satellite ready for launch

NASA, ESA discuss sending first European to Moon

AST SpaceMobile to launch BlueWalker 3 for Direct-to-Cell Phone Connectivity Testing

ESA centre to develop Europe's space economy and promote commercialisation

TECH SPACE
Shaping the future of purification

Workers strike at world's largest copper producer, Chile's Codelco

UCLA engineers create single-step, all-in-one 3D printing method to make robotic materials

Irvine scientists observe effects of heat in materials with atomic resolution

TECH SPACE
Astronomers discover a multiplanet system nearby

To find a planet, look for the signatures of planet formation

China says it detected alien signals using giant 'Sky Eye' telescope

New clues suggest how Hot Jupiters form

TECH SPACE
NASA's Europa Clipper Mission Completes Main Body of the Spacecraft

Gemini North Telescope Helps Explain Why Uranus and Neptune Are Different Colors

Bern flies to Jupiter

Traveling to the centre of planet Uranus









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.