. 24/7 Space News .
OUTER PLANETS
Gemini North Telescope Helps Explain Why Uranus and Neptune Are Different Colors
by Staff Writers
Washington DC (SPX) Jun 01, 2022

This diagram shows three layers of aerosols in the atmospheres of Uranus and Neptune, as modeled by a team of scientists led by Patrick Irwin. The height scale on the diagram represents the pressure above 10 bar. The deepest layer (the Aerosol-1 layer) is thick and composed of a mixture of hydrogen sulfide ice and particles produced by the interaction of the planets' atmospheres with sunlight.

The key layer that affects the colors is the middle layer, which is a layer of haze particles (referred to in the paper as the Aerosol-2 layer) that is thicker on Uranus than on Neptune. The team suspects that, on both planets, methane ice condenses onto the particles in this layer, pulling the particles deeper into the atmosphere in a shower of methane snow.

Because Neptune has a more active, turbulent atmosphere than Uranus does, the team believes Neptune's atmosphere is more efficient at churning up methane particles into the haze layer and producing this snow.
This removes more of the haze and keeps Neptune's haze layer thinner than it is on Uranus, meaning the blue color of Neptune looks stronger. Above both of these layers is an extended layer of haze (the Aerosol-3 layer) similar to the layer below it but more tenuous. On Neptune, large methane ice particles also form above this layer.

Astronomers may now understand why the similar planets Uranus and Neptune are different colors. Using observations from the Gemini North telescope, the NASA Infrared Telescope Facility, and the Hubble Space Telescope, researchers have developed a single atmospheric model that matches observations of both planets. The model reveals that excess haze on Uranus builds up in the planet's stagnant, sluggish atmosphere and makes it appear a lighter tone than Neptune.

Neptune and Uranus have much in common - they have similar masses, sizes, and atmospheric compositions - yet their appearances are notably different. At visible wavelengths Neptune has a distinctly bluer color whereas Uranus is a pale shade of cyan. Astronomers now have an explanation for why the two planets are different colors.

New research suggests that a layer of concentrated haze that exists on both planets is thicker on Uranus than a similar layer on Neptune and 'whitens' Uranus's appearance more than Neptune's. If there were no haze in the atmospheres of Neptune and Uranus, both would appear almost equally blue.

This conclusion comes from a model that an international team led by Patrick Irwin, Professor of Planetary Physics at Oxford University, developed to describe aerosol layers in the atmospheres of Neptune and Uranus. Previous investigations of these planets' upper atmospheres had focused on the appearance of the atmosphere at only specific wavelengths. However, this new model, consisting of multiple atmospheric layers, matches observations from both planets across a wide range of wavelengths. The new model also includes haze particles within deeper layers that had previously been thought to contain only clouds of methane and hydrogen sulfide ices.

"This is the first model to simultaneously fit observations of reflected sunlight from ultraviolet to near-infrared wavelengths," explained Irwin, who is the lead author of a paper presenting this result in the Journal of Geophysical Research: Planets. "It's also the first to explain the difference in visible color between Uranus and Neptune."

The team's model consists of three layers of aerosols at different heights. The key layer that affects the colors is the middle layer, which is a layer of haze particles (referred to in the paper as the Aerosol-2 layer) that is thicker on Uranus than on Neptune. The team suspects that, on both planets, methane ice condenses onto the particles in this layer, pulling the particles deeper into the atmosphere in a shower of methane snow. Because Neptune has a more active, turbulent atmosphere than Uranus does, the team believes Neptune's atmosphere is more efficient at churning up methane particles into the haze layer and producing this snow. This removes more of the haze and keeps Neptune's haze layer thinner than it is on Uranus, meaning the blue color of Neptune looks stronger.

"We hoped that developing this model would help us understand clouds and hazes in the ice giant atmospheres," commented Mike Wong, an astronomer at the University of California, Berkeley, and a member of the team behind this result. "Explaining the difference in color between Uranus and Neptune was an unexpected bonus!"

To create this model, Irwin's team analyzed a set of observations of the planets encompassing ultraviolet, visible, and near-infrared wavelengths (from 0.3 to 2.5 micrometers) taken with the Near-Infrared Integral Field Spectrometer (NIFS) on the Gemini North telescope near the summit of Maunakea in Hawai'i - which is part of the international Gemini Observatory, a Program of NSF's NOIRLab - as well as archival data from the NASA Infrared Telescope Facility, also located in Hawai'i, and the NASA/ESA Hubble Space Telescope.

The NIFS instrument on Gemini North was particularly important to this result as it is able to provide spectra - measurements of how bright an object is at different wavelengths - for every point in its field of view. This provided the team with detailed measurements of how reflective both planets' atmospheres are across both the full disk of the planet and across a range of near-infrared wavelengths.

"The Gemini observatories continue to deliver new insights into the nature of our planetary neighbors," said Martin Still, Gemini Program Officer at the National Science Foundation. "In this experiment, Gemini North provided a component within a suite of ground- and space-based facilities critical to the detection and characterization of atmospheric hazes."

The model also helps explain the dark spots that are occasionally visible on Neptune and less commonly detected on Uranus. While astronomers were already aware of the presence of dark spots in the atmospheres of both planets, they didn't know which aerosol layer was causing these dark spots or why the aerosols at those layers were less reflective. The team's research sheds light on these questions by showing that a darkening of the deepest layer of their model would produce dark spots similar to those seen on Neptune and perhaps Uranus.

Research Report:Hazy blue worlds: A holistic aerosol model for Uranus and Neptune, including Dark Spots


Related Links
NOIRLab
The million outer planets of a star called Sol


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


OUTER PLANETS
Traveling to the centre of planet Uranus
Bayreuth, Germany (SPX) May 12, 2022
Caption: Materials synthesis research and study in terapascal range for the first time Jules Verne could not even dream of this: A research team from the University of Bayreuth, together with international partners, has pushed the boundaries of high-pressure and high-temperature research into cosmic dimensions. For the first time, they have succeeded in generating and simultaneously analyzing materials under compression pressures of more than one terapascal (1,000 gigapascals). Such extremely hig ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

OUTER PLANETS
NASA Moon Mission Set to Break Record in Navigation Signal Test

Bill Nelson, Mark Kelly praise how ASU involves students in missions

NASA awards two contracts for next generation spacesuits

Bezos's Blue Origin makes 5th crewed flight into space

OUTER PLANETS
Subscale booster motor for future Artemis missions fires up at Marshall

NASA rolls SLS moon rocket back out to Kennedy Space Center launch pad

Ursa Major announces new engine to replace unavailable Russian-made engines

Southern Launch receives further Government funding

OUTER PLANETS
Perseverance Has a Pet Rock!

Perseverance now selects its own targets to zap

A steep but short climb: Sols 3491-3492

Bacterial cellulose enables microbial life on Mars

OUTER PLANETS
Three Chinese astronauts arrive at space station

China sends three astronauts to complete space station

China sends three astronauts to Tiangong Space Station

Shenzhou XIV astronauts transporting supplies into space station

OUTER PLANETS
China launches nine Geely-01 satellites

Axiom Space signs MOU with Italy to expand commercial utilization of space

Omnispace Spark-2 satellite launched into orbit

OneWeb satellite to be deorbited at the end of its active lifetime

OUTER PLANETS
SCOUT and LEOcloud collaborate on next gen space domain awareness services

Mitsubishi Electric develops innovative laser comms terminal

Liquid platinum at room temperature

Ancient ocean floors could help search for critical minerals

OUTER PLANETS
Geology from 50 light-years away

Close encounter more than 10,000 years ago stirred up spirals in accretion disk

Plato's cave: vacuum test for exoplanet detection

Extraterrestrial civilizations may colonize the Galaxy even if they don't have starships

OUTER PLANETS
Gemini North Telescope Helps Explain Why Uranus and Neptune Are Different Colors

Bern flies to Jupiter

Traveling to the centre of planet Uranus

Juno captures moon shadow on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.