. 24/7 Space News .
STELLAR CHEMISTRY
Twin photons from unequal sources
by Staff Writers
Basel, Switzerland (SPX) Jun 14, 2022

Although the quantum dots of the Basel researchers are different, they emit exactly identical light particles.

Identical light particles (photons) are important for many technologies that are based on quantum physics. A team of researchers from Basel and Bochum has now produced identical photons with different quantum dots - an important step towards applications such as tap-proof communications and the quantum internet.

Many technologies that make use of quantum effects are based on exactly equal photons. Producing such photons, however, is extremely difficult. Not only do they need to have precisely the same wavelength (colour), but their shape and polarization also have to match.

A team of researchers led by Richard Warburton at the University of Basel, in collaboration with colleagues at the University of Bochum, has now succeeded in creating identical photons originating from different and widely-separated sources.

Single photons from quantum dots
In their experiments, the physicists used so-called quantum dots, structures in semiconductors only a few nanometres in size. In the quantum dots, electrons are trapped such that they can only take on very specific energy levels. Light is emitted on making a transition from one level to another. With the help of a laser pulse that triggers such a transition, single photons can thus be created at the push of a button.

"In recent years, other researchers have already created identical photons with different quantum dots", explains Lian Zhai, a postdoctoral researcher and first author of the study that was recently published in Nature Nanotechnology. "To do so, however, from a huge number of photons they had to pick and choose those that were most similar using optical filters." In that way only very few usable photons remained.

Warburton and his collaborators chose a different, more ambitious approach. First, the specialists in Bochum produced extremely pure gallium arsenide from which the quantum dots were made. The natural variations between different quantum dots could thus be kept to a minimum. The physicists in Basel then used electrodes to expose two quantum dots to precisely tuned electric fields. Those fields modified the energy levels of the quantum dots, and they were adjusted in such a way that the photons emitted by the quantum dots had precisely the same wavelength.

93 percent identical
To demonstrate that the photons were actually indistinguishable, the researchers sent them onto a half-silvered mirror. They observed that, almost every time, the light particles either passed through the mirror as a pair or else were reflected as a pair. From that observation they could conclude that the photons were 93 percent identical. In other words, the photons formed twins even though they were "born" completely independently of one another.

Moreover, the researchers were able to realize an important building block of quantum computers, a so-called controlled NOT gate (or CNOT gate). Such gates can be used to implement quantum algorithms that can solve certain problems much faster than classical computers.

"Right now our yield of identical photons is still around one percent", PhD student Gian Nguyen concedes. Together with his colleague Clemens Spindler he was involved in running the experiment. "We already have a rather good idea, however, how to increase that yield in the future." That would make the twin-photon method ready for potential applications in different quantum technologies.

Research Report:Quantum interference of identical photons from remote GaAs quantum dots


Related Links
University of Basel
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Emulator reveals the intricacies of light behavior in complex evolving systems
Orlando FL (SPX) Jun 10, 2022
University of Central Florida researchers are part of a team who have revealed, for the first time, the intricacies of how light behaves in advanced dynamical optical systems with configurations known as non-Hermitian arrangements. In non-Hermitian systems, allowed energy values create self-intersecting surfaces with a unique topology and branch points, which are known as exceptional points. The surfaces cross into each other at a twist, designated by an exceptional point. The team found tha ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Left in the dust: The first golden age of citizen travel to outer space

Women in space analogues demonstrate more sustainable leadership

Dragon Mission on Hold as Astronauts Conduct Eye Exams, Spacesuit Work

NASA Moon Mission Set to Break Record in Navigation Signal Test

STELLAR CHEMISTRY
Artemis II engine section moves to final assembly

NASA Supplier Completes Manufacturing Artemis III SLS Booster Motors

NASA Marshall Team Delivers Tiny, Powerful 'Lunar Flashlight' Propulsion System

SpaceX launches Nilesat 301 satellite, recovers Falcon 9 first stage

STELLAR CHEMISTRY
How Perseverance averts collisions and zaps

The Aonia Terra region of Mars in colour

Three years of Marsquake measurements

Mars sleeps with one eye open

STELLAR CHEMISTRY
Shenzhou XIV taikonauts to conduct 24 medical experiments in space

Shenzhou XIV astronauts transporting supplies into space station

Three Chinese astronauts arrive at space station

China sends three astronauts to complete space station

STELLAR CHEMISTRY
Solid rocket boosters will support existing ULA customers and Amazon's Project Kuiper

DXC Boosts Connectivity for Space Exploration

Maine looks to grow space economy, for students, research and business

French astronaut Pesquet calls for European space independence

STELLAR CHEMISTRY
UCLA engineers create single-step, all-in-one 3D printing method to make robotic materials

Time to rebuild construction

Moon sculptures, NFTs at futuristic Art Basel fair

Irvine scientists observe effects of heat in materials with atomic resolution

STELLAR CHEMISTRY
Astronomers discover a multiplanet system nearby

New clues suggest how Hot Jupiters form

Asteroid samples contain 'clues to origin of life': Japan scientists

Colossal collisions linked to solar system science

STELLAR CHEMISTRY
NASA's Europa Clipper Mission Completes Main Body of the Spacecraft

Gemini North Telescope Helps Explain Why Uranus and Neptune Are Different Colors

Bern flies to Jupiter

Traveling to the centre of planet Uranus









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.