. 24/7 Space News .
STELLAR CHEMISTRY
Emulator reveals the intricacies of light behavior in complex evolving systems
by Staff Writers
Orlando FL (SPX) Jun 10, 2022

Operation principle of the devised fibre-based photonic emulator.

University of Central Florida researchers are part of a team who have revealed, for the first time, the intricacies of how light behaves in advanced dynamical optical systems with configurations known as non-Hermitian arrangements.

In non-Hermitian systems, allowed energy values create self-intersecting surfaces with a unique topology and branch points, which are known as exceptional points. The surfaces cross into each other at a twist, designated by an exceptional point.

The team found that the topology of an energy surface in a non-Hermitian arrangement plays more of a role in how light behaves in a time evolving system than strict winding around an exceptional point. This includes behaviors such as chiral state transfer, in which an output state is locked to the direction of winding, either clockwise or counterclockwise.

The findings, which were published recently in the journal Nature, could spur the development of novel mechanisms for light manipulation and promise profound implications for technologies such as miniaturized and robust lasers and high-precision light-based sensors.

The researchers made their observations by building a novel and multifaceted photonic emulator that allowed them to monitor the evolution of pulsed laser light in the system when it slowly varies along a closed path in the proximity of an exceptional point.

"The optical emulation platform that was realized can be used to model some of the most perplexing physical phenomena in nature," says study co-author, Mercedeh Khajavikhan, a professor of physics and electrical and computer engineering at the University of Southern California.

The experimental observations challenge previous demonstrations but support recent theoretical predictions by Khajavikhan and study co-author Demetrios Christodoulides, the Cobb Family Endowed Chair and Pegasus Professor of Optics at the University of Central Florida's CREOL- College of Optics and Photonics.

Their predictions have shown that the output of a non-Hermitian optical system - irrespective of its input - gets funneled into one of the two predefined states, depending on the direction in which a closed trajectory takes place dynamically in the vicinity or around an exceptional point.

"Other studies have looked at only what happens in the input and output of the system," says the study's lead author, Hadiseh Nasari, a postdoctoral associate with the University of Southern California and UCF's CREOL- College of Optics and Photonics, where the work was performed. "They were not able to see what happens in the course of the process."

"Our emulator is quite versatile in terms of the possibility of actually monitoring and digging into the dynamics of non-Hermitian systems close to an exceptional point," she says.

Christodoulides says the fundamental work is a major step toward harnessing the potential of these systems.

"By better understanding the underlying physics of non-Hermitian systems, we will be able to engineer the variations of energy loss and gain which is needed for the realization of integrated but efficient and powerful optical technologies," Christodoulides says.

Khajavikhan notes the technical skill that was needed to perform the study and the future research avenues it opens.

"This challenging work was led by three female postdocs and graduate students - Hadiseh, Gisela Lopez-Galmiche and Helena E. Lopez-Aviles," Khajavikhan says. "Their work opens up new research frontiers in using photonic platforms to emulate complex systems. They essentially built a very powerful optical analog computer."

Lopez-Galmiche was a postdoctoral researcher with CREOL, and Lopez-Aviles is a graduate of CREOL's doctoral program.

Study co-authors also included Alexander Schumer, a graduate student with the Institute for Theoretical Physics at Vienna University of Technology in Austria and the Ming Hsieh Department of Electrical and Computer Engineering at the University of Southern California; Absar U. Hassan and Qi Zhong, research scientists with CREOL; Stefan Rotter, professor of theoretical physics with the Institute for Theoretical Physics at Vienna University of Technology in Austria; and Patrick LiKamWa, associate dean for academic programs and a professor of optics and photonics with CREOL and UCF's Department of Electrical and Computer Engineering.

The research was funded by the Air Force Office of Scientific Research, the Defense Advanced Research Projects Agency, the Office of Naval Research, the U.S. Department of Defense's Multidisciplinary University Research Initiative, the Army Research Office, the U.S National Science Foundation, the MPS Simons collaboration, the U.S. Air Force Research Laboratory, the Austrian Science Found and a European Commission grant.

Christodoulides received his doctorate in optics and photonics from Johns Hopkins University and joined UCF in 2002. Nasari received her doctorate in electrical engineering from K. N. Toosi University of Technology in Iran and began working at USC and UCF in 2020.

Research Report:Observation of chiral state transfer without encircling an exceptional point


Related Links
University of Central Florida
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Chemists use light energy to produce small molecular rings
Munster, Germany (SPX) May 27, 2022
In the search for new active agents in medicine, molecules whose atoms are linked in rings are becoming increasingly important. Such ring systems have particularly suitable properties for producing such active agents and they are driving the development of innovative treatments for malignant tumours, as well as for neurodegenerative and infectious diseases. A team of chemists headed by Prof Frank Glorius from the University of Munster (Germany) has now succeeded in synthesising new and medically s ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Sidus Space working with NASA team for Extravehicular Activity Services Contract

Sierra Space to train astronauts at Kennedy Space Center for Orbital Reef

Women in space analogues demonstrate more sustainable leadership

Left in the dust: The first golden age of citizen travel to outer space

STELLAR CHEMISTRY
Astra rocket fails to deliver 2 small satellites after launch, NASA says

FAA requires SpaceX to make environmental changes to Starbase in Texas

Artemis II engine section moves to final assembly

NASA Supplier Completes Manufacturing Artemis III SLS Booster Motors

STELLAR CHEMISTRY
Sols 3503-3504: And We're Back

NASA, Partners establish new research group for Mars Sample Return Program

How Perseverance averts collisions and zaps

Mars sleeps with one eye open

STELLAR CHEMISTRY
China's deep space exploration laboratory starts operation

Shenzhou XIV taikonauts to conduct 24 medical experiments in space

Shenzhou XIV astronauts transporting supplies into space station

Three Chinese astronauts arrive at space station

STELLAR CHEMISTRY
Airbus built MEASAT-3d communications satellite ready for launch

NASA, ESA discuss sending first European to Moon

AST SpaceMobile to launch BlueWalker 3 for Direct-to-Cell Phone Connectivity Testing

ESA centre to develop Europe's space economy and promote commercialisation

STELLAR CHEMISTRY
James Webb telescope hit by micrometeoroid: NASA

Smartphone technology provides satellites with increased computing power

Recovering rare-earth elements from e-waste

Time to rebuild construction

STELLAR CHEMISTRY
Astronomers discover a multiplanet system nearby

To find a planet, look for the signatures of planet formation

Dead star caught ripping up planetary system

China says it detected alien signals using giant 'Sky Eye' telescope

STELLAR CHEMISTRY
NASA's Europa Clipper Mission Completes Main Body of the Spacecraft

Gemini North Telescope Helps Explain Why Uranus and Neptune Are Different Colors

Bern flies to Jupiter

Traveling to the centre of planet Uranus









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.