. 24/7 Space News .
EARLY EARTH
This little amoeba committed grand theft
by Staff Writers
New Brunswick NJ (SPX) Oct 14, 2016


The amoeba, Paulinella, which has two large, sausage-shaped plastids for photosynthesis. Image courtesy Hwan Su Yoon. For a larger version of this image please go here.

About 100 million years ago, a lowly amoeba pulled off a stunning heist, grabbing genes from an unsuspecting bacterium to replace those it had lost. Now Rutgers and other scientists have solved the mystery of how the little amoeba, Paulinella, committed the theft. It engulfed the bacterium, kept that cell alive and harnessed its genes for photosynthesis, the process plants and algae use to convert carbon dioxide into oxygen and sugar via solar energy.

"The major finding of the study is the microbial world, which we know is full of valuable genes, can move these genes between organisms according to need," said Debashish Bhattacharya, a study co-author and distinguished professor in the Department of Ecology, Evolution and Natural Resources at Rutgers. "When a microbe has a gene deficit, it can in some cases fill that deficit by grabbing the same gene from the environment. This shows how fluid microbial genomes really are."

"But people should not get the idea that humans will be grabbing bacterial genes any time soon, because they have a sequestered (protected) germ line," said Dana C. Price, a study co-author and associate research professor in the Department of Plant Biology and Pathology in the School of Environmental and Biological Sciences. "This is about microbial life such as bacteria and single-celled eukaryotes."

The international study by U.S. and German scientists was published online in the Proceedings of the National Academy of Sciences.

The Earth is green because photosynthetic plants and algae contain chlorophyll, a green pigment that reflects green wavelengths of light. Their photosynthetic ability arose from a much more ancient theft committed some 1.5 billion years ago. Back then, an algal ancestor engulfed a photosynthetic bacterium, reducing it to a chloroplast, a plastid with chlorophyll. Plastids are organelles, which, like the organs in the human body, are structures that contain DNA and have specific functions, in this case photosynthesis.

The engulfing process is known as primary endosymbiosis, and it altered life on Earth by allowing the rise of animals that depend on plant life.

The theory of endosymbiosis has an interesting scientific history. In 1895, German naturalist Robert Lauterborn wrote a paper on Paulinella chromatophora, an amoeba he discovered, and his finding of plant cells inside the amoeba. It has two large, sausage-shaped plastids called chromatophores, which facilitate photosynthesis. Lauterborn suggested that this could represent the symbiosis, or collaboration, of two cells, and this discovery aided the development of the endosymbiosis theory.

For decades thereafter, however, scientists could not find or culture Paulinella cells from the environment. But about 20 years ago, a German scientist, Michael Melkonian, who Bhattacharya worked with, was able to get an isolate of the amoeba and cultured it in Cologne, Germany. Meanwhile, the science of genomics improved in recent years, allowing researchers to solve Paulinella's mysteries.

In the new study, scientists led by Eva Nowack examined Paulinella to learn the rules of genome evolution that allowed photosynthesis to take hold and flourish. The rules could be revealed because the Paulinella endosymbiosis took place 100 million years ago, using the same process that unfolded about 1.5 billion years ago.

Using this unique model, the researchers asked a critical question about endosymbiosis that had dogged scientists for many years. It has long been known that cells kept inside other cells can no longer share DNA with their own species and tend to build up a lot mutations in their genome, leading to their demise.

This decay process is called Muller's ratchet. So how did the captured plastid escape the ratchet after millions of years of imprisonment? Analysis of Paulinella genomic data showed that every time it lost a gene, the amoeba replaced it with another gene with the same function from bacteria.

"Evolution can find a way, in this case by solving the problem of broken genes by gathering replacement genes from the environment," Bhattacharya said. "Who knows, in a 100 million years or so, the descendants of Paulinella might become the dominant plants on our planet."

Study authors include Nowack of the Carnegie Institution for Science in Stanford, California, and the Heinrich-Heine-Universitat Dusseldorf in Germany; Price and Bhattacharya; Anna Singer of the Heinrich-Heine-Universitat Dusseldorf; Michael Melkonian of the Universitat zu Koln in Germany; and Arthur R. Grossman of the Carnegie Institution for Science.

"It's really remarkable that a paper written in a journal 120 years ago actually laid the foundation for this study," Bhattacharya said. "It's very rare that a species that is so hard to find and culture starts to play an important role in understanding fundamental processes in cells."

Research paper


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Rutgers University
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EARLY EARTH
Research to answer a 'crushing' evolutionary question
Newark NJ (SPX) Oct 12, 2016
Studying the physical features of long-extinct creatures continues to yield surprising new knowledge of how evolution fosters traits desirable for survival in diverse environments. Placodonts are a case in point - specifically, the placodont teeth that Stephanie Crofts, an NJIT post-doctoral researcher, has written about in an article recently published in the journal Paleobiology. Now wor ... read more


EARLY EARTH
Spectacular Lunar Grazing Occultation of Bright Star on Oct. 18

Hunter's Supermoon to light up Saturday night sky

Small Impacts Are Reworking Lunar Soil Faster Than Scientists Thought

A facelift for the Moon every 81,000 years

EARLY EARTH
Euro-Russian craft enters Mars orbit, but lander's fate unknown

Anxious wait for news of Mars lander's fate

What! - Go To Mars?

Modeling floods that formed canyons on Earth and Mars

EARLY EARTH
Beaches, skiing and tai chi: Club Med, Chinese style

NASA begins tests to qualify Orion parachutes for mission with crew

New Zealand government open-minded on space collaboration

Growing Interest: Students Plant Seeds to Help NASA Farm in Space

EARLY EARTH
Chinese astronauts reach orbiting lab: Xinhua

Astronauts enjoy range of delicacies on Shenzhou XI

China to enhance space capabilities with launch of Shenzhou-11

China launches 2 astronauts for 33-day mission

EARLY EARTH
Two Russians, one American blast off to ISS

Tools Drive NASA's TReK to New Discoveries

Hurricane Nicole delays next US cargo mission to space

Automating sample testing thanks to space

EARLY EARTH
Swedish Space Corporation Celebrates 50th Anniversary of Esrange Space Center

US-Russia Standoff Leaves NASA Without Manned Launch Capabilities

Ariane 5 ready for first Galileo payload

ILS Announces Two Missions under Its EUTELSAT Multi-Launch Agreement

EARLY EARTH
Proxima Centauri might be more sunlike than we thought

Stars with Three Planet-Forming Discs of Gas

TESS will provide exoplanet targets for years to come

The death of a planet nursery?

EARLY EARTH
Lego-like wall produces acoustic holograms

U.S. State Dept. approves $194 million radar sale to Kuwait

Pushing the boundaries of magnet design

Polymer breakthrough to improve things we use everyday









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.