. 24/7 Space News .
EARLY EARTH
Research to answer a 'crushing' evolutionary question
by Staff Writers
Newark NJ (SPX) Oct 12, 2016


The skull of a placodont - Placodus gigas - clearly showing upper and lower teeth well suited to crushing the shells of creatures that were a primary source of food.

Studying the physical features of long-extinct creatures continues to yield surprising new knowledge of how evolution fosters traits desirable for survival in diverse environments. Placodonts are a case in point - specifically, the placodont teeth that Stephanie Crofts, an NJIT post-doctoral researcher, has written about in an article recently published in the journal Paleobiology.

Now working with Assistant Professor of Biological Sciences Brooke Flammang in her Central King Building lab, Crofts is the co-author of "Tooth occlusal morphology in the durophagous marine reptiles, Placodontia (Reptilia: Sauropterygia)."

Placodonts, a group of extinct marine reptiles, lived at the beginning of the Triassic Period, the beginning of the age of dinosaurs, some 250 million years ago. They thrived in the shallows of the sea that split the ancient supercontinent Pangea. Their fossils have been found in Germany, Switzerland and Italy, and new specimens are being discovered in China.

All placodonts have teeth on their upper and lower jaws, as well as a set of teeth lining the roof of the mouth. But over their evolutionary history, Crofts explains, placodonts developed specialized "crushing" teeth well-suited for eating the "hard prey" creatures that shared their environment - creatures with thick shells, like clams or mussels.

The evolutionary ancestors of placodonts had long, pointy teeth, even on the roof of the mouth, especially suitable for catching soft-bodied prey. In contrast, placodonts are easily identified by their crushing teeth, bulbous in early placodonts and flattened in species that occur later in the evolutionary lineage. The basic question for Crofts: How well did these teeth function, and did later placodonts achieve an "optimal" crushing tooth?

International Investigation
Working with and international team of colleagues she met before joining NJIT in 2016, Crofts, traveled to museums throughout Europe to collect data on the shape of placodont teeth. Crofts' collaborators were James Neenan, a research fellow at the Oxford Museum of Natural History in England, Torsten Scheyer, associate professor at the University of Zurich's Palaeontological Institute and Museum, and Adam Summers, professor in the University of Washington's Department of Biology and head of the comparative vertebrate biomechanics lab at the university's marine field station, Friday Harbor Laboratories.

Their investigative effort was made possible by funding from the Society of Vertebrate Paleontology, the University of Washington, the National Science Foundation and Swiss National Science Foundation.

In the course of her travel, Crofts compared the shapes of placodont teeth in the museum collections to models that tested how efficiently the teeth would break shells and how well they resisted breaking under pressure.

Based on these models, Crofts and her team were able to predict that placodonts should have evolved a slightly rounded tooth surface, which would break shells efficiently without damaging the tooth itself. While some later occurring placodonts did just that, evolution equipped the latest known occurrences of these creatures with teeth that had quite different and very intriguing characteristics.

Instead of the predicted optimal tooth, this group of placodonts developed a complex tooth surface with a shallow, crescent-shaped furrow surrounding a small cusp on the principal crushing teeth.

As Crofts and her collaborators suggest in the Paleobiology article, this tooth structure may have worked in a way similar to the function proposed for early hominin molars - with the furrow holding prey in place while the small cusp applies the force needed to break through the prey's shell. Further, Neenan and Scheyer have demonstrated that there is a slower rate of tooth replacement in this same group of placodonts, likely because changes in tooth shape protect the tooth from failure.

Palaeontological Perspectives
Crofts, who completed her Ph.D. at the University of Washington in 2016, brings a paleontological perspective and interest in the evolution of functional morphology to the increasing range of research under way in Flammang's Fluid Locomotion Laboratory.

Flammang is the founding director of the lab, and with the assistance of Crofts and other colleagues is taking a multidisciplinary look at nature's marine propulsion systems. Crofts became interested in the postdoc position available at NJIT when she met Flammang while both were taking a course at Brown University on X-Ray Reconstruction of Moving Morphology (XROMM), an advanced technique for producing highly detailed 3D video of skeletal movement.

Crofts' current work at NJIT integrates comparative anatomy and physiology, biomechanics, hydrodynamics, and the use of biologically inspired robotic devices to investigate how aquatic organisms interact with their environment and drive the evolution of morphology and function. In addition to increasing the fund of basic scientific knowledge, it's work that has implications for the design of various types of submersible vehicles, including fully autonomous vehicles.

Reflecting on her research involving placodonts, Crofts says that it is a "window into the complexities and possibilities" inherent to the process of evolution. The placodonts she studied and wrote about surprised with teeth differing very significantly from those which evolved in other related species. At NJIT, Crofts is continuing the search for new insights into how evolution shapes the functional relationship of all creatures - including humans - with the surrounding world.

Research paper


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
New Jersey Institute of Technology
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EARLY EARTH
How evolution has equipped our hands with 5 fingers
Montreal, Canada (SPX) Oct 07, 2016
Have you ever wondered why our hands have exactly five fingers? Dr. Marie Kmita's team certainly has. The researchers at the Institut de recherches cliniques de Montreal and Universite de Montreal have uncovered a part of this mystery, and their remarkable discovery has just been published in the prestigious journal Nature. We have known for several years that the limbs of vertebrates, inc ... read more


EARLY EARTH
Exploration Team Shoots for the Moon with Water-Propelled Satellite

Space tourists eye $150mln Soyuz lunar flyby

Roscosmos to spend $7.5Mln studying issues of manned lunar missions

Lockheed Martin, NASA Ink Deal for SkyFire Infrared Lunar Discovery Satellite

EARLY EARTH
Schiaparelli readied for Mars landing

Opportunity at First Science Spot of its 10th Extended Mission

Study predicts next global dust storm on Mars

NASA flight program tests Mars Lander vision system

EARLY EARTH
Beaches, skiing and tai chi: Club Med, Chinese style

NASA begins tests to qualify Orion parachutes for mission with crew

New Zealand government open-minded on space collaboration

Growing Interest: Students Plant Seeds to Help NASA Farm in Space

EARLY EARTH
Closing windows on Shenzhou 11

Beijing exhibition means plenty of "space" for everyone

Space for Shenzhou 11

Waiting for Shenzhou 11

EARLY EARTH
Automating sample testing thanks to space

Orbital CRS-5 launching hot and bright science to space

Roscosmos Sets New Date for Soyuz MS-02 Launch to Orbital Station

Japan Schedules Cargo Transporter Launch to ISS for December 9

EARLY EARTH
Trusted Ariane 5 lays foundations for Ariane 6

ULA gets $860 million contract modification for expendable launch vehicle

Ariane 5 reaches the launch zone for Arianespace's October 4 liftoff

Rocket launch site to open up New Zealand space industry: Minister

EARLY EARTH
The death of a planet nursery?

Protoplanetary Disk Around a Young Star Exhibits Spiral Structure

New Low-Mass Objects Could Help Refine Planetary Evolution

Pluto's heart sheds light on a possible buried ocean

EARLY EARTH
French-Japanese laboratory to study materials under extreme conditions

Solving a cryptic puzzle with a little help from a hologram

Technique mass-produces uniform, multilayered particles

A breakthrough in the study of how things break, bend and deform









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.